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Abstract—The development of graph neural networks has been
driven by the widespread area of applications where graphs
are naturally fit and by the advances in making solutions
scalable. When it comes to spectral graph convolutional networks
(GCNs), directed graphs suffer from the asymmetric nature of
their Laplacian matrices. For such graphs, there is no natural
extension of the spectral graph theory well-established for their
undirected analogues with inherent symmetric matrices. In this
paper, we propose i-DGCN: a spectral GCN approach addressing
directed graphs by means of a novel symmetric Laplacian matrix
constructed using a quantification of the interaction between
the nodes. In order to assess i-DGCN, we undertake two tasks:
anomaly detection for graph-structured data (unsupervised) and
graph link existence prediction (supervised). Then, we compare
the results with other Laplacian alternatives for directed graphs.

Index Terms—graph neural networks, spectral graph convolu-
tion, directed graphs

I. INTRODUCTION

Graph machine learning is an effervescent field that extends
the traditional machine learning methods – often assuming
data points are independent, to graphs – where data is in-
herently interdependent. An appealing part of this realm is
represented by spectral graph convolutional networks (GCNs),
which derive the principles of convolutional neural networks
to graph data. GCNs operate in the spectral domain, using
the eigenvalues and eigenvectors of the graph Laplacian to
perform convolution operations. This approach allows GCNs
to generalize the concept of spatial locality, which is essential
to the irregular structure of graphs.

Applying spectral methods to directed graphs presents
unique challenges. The graph Laplacian, a fundamental com-
ponent in spectral methods, does not enjoy the neat properties
of a symmetric matrix. This generally translates to complex
eigenvalues and the lack of well-defined basis for convolution.

A. Content and contribution

In this paper, we propose an artificial Laplacian matrix
for directed graphs, constructed by means of representing
the relationships between nodes in a symmetric way. This is
achieved through quantifying the interactions between vertices
and obtaining an intensity [1]. The suggested Laplacian is
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based on the adjacency matrix built with intensities rather than
edge weights. We then address two graph problems: anomaly
detection and link existence prediction.

B. Related work

For undirected graphs, a significant leap in defining spectral
GCNs was taken in [2], where an architecture based on
Chebyshev polynomials of the adjacency matrix was used. For
directed graphs, such a solution can be immediately used if
we work with the symmetrized adjacency matrix (instead of
the true asymmetric Laplacian). This approach can work in a
limited number of applications, since it ignores the imbalances
between nodes.

To include asymmetry, the key is to recur to Hermitian
Laplacians, where the information introduced by the imaginary
part—or the phase—can model the direction of the edges.
MagNet [3] was the first to propose the use of the magnetic
Laplacian where, speaking in broad terms, the symmetrized
adjacency matrix takes the role of magnitude and the prevalent
direction of the edges gives the phase. MagNet needs careful
scaling of the phase, because its periodic nature can make the
related information ambiguous. An alternative, working also
for signed weights, is the sign-magnetic Laplacian (SigMaNet)
[4], where the directions of the edges and the signs of the
weights are uniquely coded by the phase. Other Laplacians
from the same family can be found in [5]–[7]. An extension
to quaternions was proposed in [8].

Some previous substitutes of the Laplacian for directed
graphs used several symmetric matrices [9] and thus were
more complicated than a Hermitian Laplacian.

II. SPECTRAL GRAPH CONVOLUTIONS

Let G = (V, E) be an undirected graph, with |V| = N
nodes. E is composed of unordered pairs of vertices from V
and let us denote wuv > 0 the weight of the edge between
vertices u and v, leading to the construction of the adjacency
matrix A and of the diagonal degree matrix D, with D(u, u) =∑

v ̸=u wuv .
Graphs lack a relevant translation operator, therefore the

spatial convolution is impossible to define. However, the graph
Fourier domain enables convolutions through multiplication.
The foundation of defining the Fourier transform (and its
inverse) for a graph signal is the eigendecomposition of



the Laplacian L = D − A, which can be diagonalized as
L = UΛUT , where U = [u0, ..., uN−1] is the matrix of
eigenvectors (Fourier basis) and Λ = diag ([λ0, ..., λN−1]) is
the diagonal matrix of eigenvalues (frequencies). The Lapla-
cian of an undirected graph is a symmetric matrix, therefore
enjoys a complete set of orthonormal eigenvectors together
with real and nonnegative eigenvalues. In practice, the classic
combinatorial Laplacian L = D − A is often substituted by
the symmetrically normalized form [10]:

Ls = D−1/2LD−1/2 = IN −D−1/2AD−1/2, (1)

with eigenvalues in [0, 2].
With a proper convolution defined, a signal x can be filtered

by a filter gθ according to [11]:

gθ ∗G x = gθ (Ls)x = gθ
(
UΛUT

)
x = Ugθ (Λ)U

Tx. (2)

The simplest gθ can be a non-parametric filter, however, as
emphasized in [11], such a filter is not localized. Moreover,
[2] pinpoints as drawbacks the computational complexity of
performing the convolution and the difficulty to scale the
approach for large graphs because of the eigendecomposition.

A parametrization of the filter with a recursively-formulated
polynomial evaluated in the Laplacian can be employed to
tackle these issues, as [11] suggests. It is further shown in [12]
that a truncated expansion in terms of Chebyshev polynomials
up to order K can be used to approximate the filter gθ (Λ) and
so the filtering operation becomes:

gθ′ ∗G x =

K∑
k=0

θ′kTk(L̃s)x, (3)

where θ′k are coefficients, Tk (t) = 2tTk−1 (t)−Tk−2 (t) with
T0 = 1 and T1 = t, and L̃s = 2

λmax
Ls − IN . Following

[2], λmax = 2 and K = 1 can be employed. Moreover,
a renormalization is suggested, consisting in initially adding
self-loops to the adjacency matrix and then proceeding to
computing the Laplacian L̃s starting from Ã = A + IN .
This renormalization procedure is motivated by making the
gradients more stable when iteratively applying the Laplacian
operator, but also by aggregating information from itself in the
convolution, not only from neighboring vertices.

III. i-DGCN

Instead of attempting to generalize the spectral graph theory
to the family of directed graphs, a more reasonable approach
would be to derive a symmetric Laplacian alternative.

A. Intensity

In [1], the following intensity is introduced, as a means of
quantifying the interaction between vertices:

iv (u) =

{
max (Pgaw (u) , Sgaw (v)) , if v ∈ P(u)
max (Pgaw (v) , Sgaw (u)) , if v ∈ S(u), (4)

where P(u) and S(u) denote the sets of predecessors and
successors of u, respectively. Similarly, Pgaw(u) and Sgaw(u)
are the geometric averages of weights associated with edges

between u and P(u) and S(u), respectively. This is a measure
of the strength of the interaction of node u w.r.t. node v,
constructed considering both edge weights and directions.

We can leverage the intensity and derive a symmetric
adjacency matrix of G. In other words, we indirectly alter the
structure of the graph by replacing a directed and weighted
edge with an undirected edge which has the intensity assigned
as weight. The benefit of this approach is that it captures the
importance of a node in the context of its neighbors. Since the
intensity measures the interaction of node u w.r.t. node v, we
can notice the following equality holds when vertices u and v
are connected by a single edge:

iv (u) = iu (v) . (5)

For simplicity, we further denote by iuv the unique value
characterizing the connection between u and v, regardless of
the original edge direction.

However, the case where two edges of opposing directions
exist between the same nodes needs to be accommodated too.
We handle this situation by considering the maximal intensity
between the two vertices.

B. Intensity Laplacian

Using the intensity measure, we can construct a correspond-
ing adjacency matrix, defined as:

Ai (u, v) =

{
iuv, if (u, v) ∈ E
0, otherwise. (6)

Since Ai is symmetric (moreover, positive semidefinite), it is
well-behaved w.r.t. the notions presented in Section II and can,
therefore, be used in deriving the intensity Laplacian

Lis = IN −D−1/2
i AiD−1/2

i . (7)

This way, our Laplacian offers not only a well-behaved
operator from a spectral standpoint, but also a glimpse of the
most dominant vertices in the graph and embeds a quantifica-
tion of the interaction between nodes which inherently takes
into account original edge directions.

C. i-DGCN architecture

By i-DGCN we denote the approach of using spectral
convolutional layers based on the proposed intensity Laplacian
rather than denoting a specific architecture. Let L be the num-
ber of layers and let X(0) be a N×S0 matrix of input features,
where each column is a graph signal x(0)

k , k ∈ {1, 2, ..., S0}.
Considering (3) and approximating λmax = 2, we can write
the propagation rule through a layer as

X(l+1) = σ

(
K∑

k=0

Tk(L̃is)X
(l)Θ(l)

)
, (8)

where L̃is denotes the symmetrically normalized intensity
Laplacian, with the renormalization considered. Θ(l) repre-
sents the learnable filter parameters of the layer, and σ the
nonlinearity. After propagation through layer l, the resulting
X(l+1) is a matrix N × Sl+1, where Sl+1 depends on the
characteristics of the network.



IV. RESULTS

As already mentioned, we assess the proposed Laplacian
by tackling the anomaly detection (unsupervised) and link
existence prediction (supervised) problems, for which we run
experiments1 with various configurations.

Besides i-DGCN, we train similar models based on the
Magnetic Laplacian (MagNet) [3], Sign-Magnetic Laplacian
(SigMaNet) [4], and the trivially symmetrized Laplacian,
denoted SymGCN (the weights of edges (u, v) and (v, u) are
equal to (wuv+wvu)/2). For both tasks, the employed learning
rate values are 0.001, 0.005, 0.01, and 0.05. The order of the
Chebyshev polynomial is 1. We use Adam optimizer and, to
avoid overfitting, l-2 regularization with hyperparameter set to
5 · 10−4. Moreover, a final dropout layer of probability 0.5 is
present for each model in the link prediction task and after
each convolutional layer for anomaly detection.

1) Anomaly detection: For the first task, we integrate our
Laplacian into the spectral convolutional layers of a symmetric
autoencoder network [13] and attempt to detect anomalies
in a directed graph, in an unsupervised manner. The dataset
is adopted from [14], a graph composed of transactions be-
tween bank accounts belonging to customers of Libra Internet
Bank [14], with 385100 vertices and 597165 weighted edges.
Anomalies represent accounts suspected of money laundering
and sum up to a total of 600 individual nodes, with a total
weight of 1034 (each node has an anomaly weight proportional
with the number of anomalous transactions it is involved in).
We feed graph signals through each convolutional layer of
the network, constructed as shown in (8). The classification
procedure itself relies on the obvious class imbalance between
anomalous and normal nodes of the Libra graph, expecting the
network to fail in properly learning a latent representation and
then reconstructing anomalous nodes. Hence the representation
error can be seen as a direct anomaly score.

We set the size of the encoder input equal to the size of
the decoder output and each propagation through the encoder
and decoder is characterized by decreasing and, respectively,
increasing the dimensionality of the data by a factor of 2.
Noticeably, there can be a maximum number of layers limited
by the chosen size of the encoder input and decoder output.
Moreover, in case of dimension discrepancies, we handle
them by making use of two linear layers which surround the
encoder-decoder structure and properly adapt the dimension
of the data. We use the l-1 loss function, to allow a few
large errors, presumably for anomalies, and ReLU [15] as
nonlinearity. The choice of graph signals for these experiments
are the incoming and outgoing amounts for a vertex, therefore
an input set of size N × 2.

Our experiments use two autoencoder flavors, depending on
the hidden dimension: complete and overcomplete. The first
architecture has a hidden dimension equal to the number of
input signals, i.e. 2, whereas for the second one, we choose
4 as hidden dimension. In order to eliminate any possibility

1Code available at https://github.com/theodorbadea/i-DGCN

TABLE I
ANOMALY DETECTION TPR-AUC RESULTS FOR LIBRA DATASET

Model auc 1% tpr 0.1% tpr 0.2% tpr 0.5% tpr 1%
COMPLETE

i-DGCN 61.442 30.812 46.411 67.678 82.688
MagNet 61.371 30.909 45.831 67.611 82.620
SigMaNet 61.380 30.947 45.744 67.601 82.591
SymGCN 61.266 30.802 45.793 67.524 82.533

OVERCOMPLETE
i-DGCN 61.488 30.889 46.566 67.698 82.649
MagNet 61.384 30.947 45.744 67.601 82.591
SigMaNet 61.384 30.947 45.744 67.601 82.591
SymGCN 61.383 30.947 45.744 67.601 82.591

TABLE II
ANOMALY DETECTION AN RESULTS FOR LIBRA DATASET

Model an 0.1% an 0.2% an 0.5% an 1%
COMPLETE

i-DGCN 115.3 202.1 337.5 442.0
MagNet 115.8 199.3 337.1 440.3
SigMaNet 116.0 199.0 337.0 440.0
SymGCN 114.9 198.8 336.4 440.0

OVERCOMPLETE
i-DGCN 115.7 202.9 338.0 441.4
MagNet 116.0 199.0 337.0 440.0
SigMaNet 116.0 199.0 337.0 440.0
SymGCN 116.0 199.0 337.0 440.0

of encountering phase scaling issues [4] for the magnetic
Laplacian, we take the logarithm of the original weights.

The Libra graph is prone to training overfitted autoencoder
models, thus we enforce maximum number of 100 epochs,
with a rather aggressive early stopping condition of 10 epochs
without finding a smaller loss. We performed 10 independent
training and evaluation sessions with each model. Since there
are only 600/385100 anomalies in the Libra graph, we report
the results such that we alleviate the obvious class imbalance:
tpr p% – true positives rate for the first p% weighted most
anomalous nodes detected; an p% – number of true anoma-
lous nodes among p% unweighted most anomalous nodes
detected; auc 1% – area under the TPR curve for the 1%
weighted nodes with highest anomaly scores. We choose p as
0.1, 0.2, 0.5, and 1. Furthermore, we show these values as
percentages, where 100% corresponds to 1.

Tables I and II show the best performing model of each type
in terms of auc 1% averaged across the 10 individual rounds.
For both complete and overcomplete autoencoder variants, the
best model of each family is yielded by a 0.05 learning rate
– the largest used throughout our experiments.

Our intensity Laplacian is clearly capable, yielding models
which outperform the magnetic Laplacians and the trivially
symmetrized alternative on the anomaly detection task. i-
DGCN wins in terms of auc 1% and TPR, with a single
exception for tpr 0.1%, where SigMaNet obtains the largest
value and i-DGCN is ranked third. These results are perfectly
consistent with the number of actual anomalous nodes uncov-
ered, as shown in Table II. For an 0.2% and an 1%, i-DGCN
manages to uncover approximately two more anomalous nodes
than the second best, MagNet. The overcomplete architecture



has a dimension of 4, hence two layers are needed for the
encoder to reach a latent representation space of size 1 and the
same number of layers for the decoder to produce a reconstruc-
tion of the same original dimension. Also, the additional linear
layers are employed as described to transform the data into the
appropriate shape. As we can see in Tables I and II, the same
perfectly consistent behavior as in the complete autoencoder
case occurs: i-DGCN loses only for tpr 0.1% and an 0.1%.
Adding more complexity to the network slightly improved the
results for our approach and partially for others. MagNet does
not benefit from the overcomplete architecture, results being
better only for tpr 0.1% and poorer for all the other metrics
when put side by side with its complete variant. SymGCN
equals the magnetic approaches in this setup.

Although our intensity Laplacian slightly outperforms other
alternatives, it is fair to say that they all perform relatively
well. The results are clearly better than those of the reduced
egonet method from [14], where the values for auc 1% and
an 1% are 60.16 and 377.2, respectively; however, the cited
method is still the best for tpr 0.1%, with a result of 40.04.

2) Link existence prediction: To predict the existence of
edges, we make use of convolutional architectures with various
dimensions, as in [3], [4]. Chebyshev convolutional layers
are stacked together with ReLU [15] nonlinearity. After the
convolutions, the signal can be seen as a node embedding
and a final linear transformation is applied. Then, logarithmic
softmax is employed and the model is trained through negative
logarithmic likelihood loss between the predicted and the
actual edge existence label. Three graphs are used for this
task: Telegram [16]; Bitcoin Alpha and Bitcoin OTC [17]. The
first dataset is a pairwise-influence network between Telegram
channels used to analyse interactions related to the propagation
of political ideologies. It has 245 nodes belonging to four
classes and 8912 edges. Bitcoin graphs originate from the
eponymous cryptocurrency exchanges and can be viewed as
trust networks: both Alpha and OTC exchanges allow users to
rate the others on a scale of −10 to +10 (0 excluded), where
scammers should be assigned −10 and fully legitimate users
+10. Bitcoin Alpha has 3783 vertices with 22650 and 1536
positive and negative edges, respectively. The slightly larger
Bitcoin OTC has 5881 nodes with 32029 and 3563 positive
and negative edges, respectively. Since our method does not
support negative weights, we preprocess these datasets as in
[4]. Similarly to anomaly detection, we use the incoming and
outgoing total edge weights as graph signals.

Since the approach is supervised, we follow [3], [4] and
split the datasets for training (80%), validation (5%), and
testing (15%). The experiments are run with k-cross validation,
where k = 10, and preserving graph connectivity. We search
models among variations with 2, 4, 8 layers and a hidden
dimension of 16, 32, 64. The maximum number of epochs in
the training phase is set to 3000, with a more relaxed early
stopping condition of 500 iterations without the validation
error decreasing.

Two flavors of this task are addressed, as described in [3]:
• (a) Existence prediction: if (u, v) ∈ E , (u, v) has the

TABLE III
LINK EXISTENCE PREDICTION.

Model Telegram Bitcoin Alpha Bitcoin OTC
Existence prediction

i-DGCN 86.94 ± 0.49 87.61 ± 0.54 88.89 ± 0.24
MagNet 86.87 ± 0.57 87.42 ± 0.42 88.61 ± 0.56
SigMaNet 86.38 ± 0.38 87.27 ± 0.44 88.34 ± 0.46
SymGCN 86.44 ± 0.61 87.17 ± 0.37 88.64 ± 0.31

Three-class link prediction
i-DGCN 83.03 ± 0.50 85.32 ± 0.54 85.47 ± 0.73
MagNet 83.12 ± 0.42 85.29 ± 0.67 85.53 ± 0.67
SigMaNet 82.40 ± 0.36 84.87 ± 0.51 85.51 ± 0.85
SymGCN 82.66 ± 0.52 85.25 ± 0.73 85.43 ± 0.81

label 0, otherwise 1;
• (b) Three-class link prediction: for an ordered pair

(u, v), the label is 0 if (u, v) ∈ E ; the label is 1 if
(v, u) ∈ E ; and the label is 2 if (u, v) ̸∈ E and (v, u) ̸∈ E .

In [4], we can notice that MagNet and SigMaNet prove to
outperform other approaches when tackling the link existence
prediction problem. Therefore, we compare our Laplacian only
with these two magnetic alternatives. Additionally, we also test
using the symmetrized Laplacian.

Table III contains the results obtained, averaged across the
10 splits, together with the standard deviation. The results
show that our Laplacian achieves the best results on all three
datasets for the binary existence task, outperforming both
magnetic and the trivially symmetrized Laplacians. For i-
DGCN and SymGCN, the best model for each dataset has a
configuration with 8 layers and 64 hidden dimension. Slightly
differently, MagNet attains best results with only 4 layers for
Bitcoin Alpha and Bitcoin OTC. As for the learning rates,
we could notice that i-DGCN and SymGCN obtain the best
results 0.001 and 0.005, whereas magnetic Laplacians need
larger learning rates.

On the three-class link prediction task, even though the
intensity Laplacian does not explicitly encode edge orienta-
tions, it still manages to outperform the other alternatives on
the Bitcoin Alpha dataset. Similarly, for all three graphs, the
best model yielded by the i-DGCN approach had 64 hidden
dimension and 4 and 8 layers for the two Bitcoin and Telegram
graphs, respectively.

V. CONCLUSIONS

We have proposed a method to construct a Laplacian matrix
for directed and weighted graphs starting from an intensity
measure [1], which characterizes the interaction between
vertices in a symmetric manner. The advantage is that our
Laplacian, by construction, inherently embeds information
about the vertex dominance within the graph w.r.t. the original
orientations of the edges. Then, we have integrated it in
the layers of spectral GCNs, denoted by i-DGCN. We have
evaluated the proposed Laplacian for both unsupervised and
supervised tasks: anomaly detection and two flavors of link
existence prediction, respectively. In each scenario, i-DGCN
proved either clearly superior, or a serious competitor to other
Laplacian alternatives for directed and weighted graphs.
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