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ABSTRACT

Graph machine learning techniques and notably graph neural
networks (GNNs) have seen a surge in popularity due to the
suitability of graphs for being the underlying data structure in
a multitude of applications. Spectral graph convolutional net-
works (GCNs), however, seem to encounter shortfalls when
it comes to directed graphs. The root cause lies in the asym-
metric nature of the adjacency matrices and of the resulting
Laplacians of such graphs; being ill-behaved with respect to
the spectral theory. In this paper, we attempt to overcome this
limitation through DualGCN: a spectral GCN approach based
on the symmetrized and skew-symmetrized Laplacian matri-
ces. To test the proposed method, we undertake the anomaly
detection problem for graph-structured data and obtain better
results than with other approaches.

Index Terms— directed graph neural network, spectral
graph convolutional network, graph machine learning, graph
anomaly detection

1. INTRODUCTION

Graphs benefit from the advantage of encapsulating both
structural and relational information. In many scenarios, rel-
evant connections must be accounted for in order to obtain an
adequate description of the problem. Consequently, adopting
a graph as the underlying data structure to formally describe
the problem is a reasonable choice. Internet, social networks,
and biochemistry are only several examples to support their
ubiquitous nature.

Given the versatility and popularity of graphs, classical
convolutional neural networks have easily found their graph
counterparts – graph convolutional networks (GCNs). Gener-
ally, they can be classified as either spatial or spectral meth-
ods. The first category is largely straightforward, with the
convolution operation based on the graph topology and char-
acterized as a neighborhood averaging with learnable weights
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[1, 2]. Conversely, spectral approaches [3] are more subtle
and better related to the convolution notion from signal pro-
cessing. They leverage the eigendecomposition of the Lapla-
cian to define the graph convolution as an element-wise mul-
tiplication in the Fourier basis, with eigenvectors representing
the Fourier modes.

While spatial GCNs, usually, can be extended with ease
to directed graphs, the spectral class suffers because of the
asymmetric nature of the adjacency matrix, which, ultimately,
results in an asymmetric Laplacian. The inadequacy of such
matrix in defining the aforementioned convolution comes
from its lack of a full set of real eigenvalues, hence the char-
acterization of ill-behaved from a spectral theory perspective.
As [4] and [5] suggest, the challenge of spectral GCNs in
case of directed graphs resides in defining a symmetric, real-
valued, and positive semidefinite Laplacian matrix, with a full
set of real eigenvalues and a bounded spectrum when prop-
erly normalized. Moreover, for the benefit of the problem,
it should encode as much information as possible from the
graph – both structural and relational.

1.1. Contribution and content

Our focus is on tackling the anomaly detection problem for
graph-structured data. The proposed approach relies on lever-
aging two versions of the Laplacian together with a spectral
graph convolutional neural network. The Laplacian matri-
ces used are the symmetric and skew-symmetric derived from
the directed graph Laplacian. The goal is to develop an ef-
ficient and easily trainable spectral graph convolutional net-
work in the autoencoder fashion [6], which we then use to
detect anomalous nodes in our working dataset, in an unsu-
pervised manner.

We start by emphasizing in Section 1.2 several works
from domain literature which influenced this paper and then
we continue the discussion with a brief description of the
problem and of our graph dataset in Section 1.3. The es-
sential core notions of spectral graph theory are covered in
Section 2. Then, after having established the context, in Sec-
tion 3, we describe the proposed detection approach based



on a spectral GCN with the proposed Laplacians. Finally,
Section 4 is dedicated to analyzing and comparing the ex-
perimental results and Section 5 to providing some closing
thoughts regarding the discussed method.

1.2. Related work

Spectral GCNs have been introduced in [3], but the compu-
tational complexity in their original form limited the applica-
bility to small graphs. The computational issues are solved in
[7] by a parametrization of the convolutional filters through a
truncated expansion of Chebyshev polynomials evaluated at
a scaled Laplacian Ls = 2

λmax
L − IN . Further simplifica-

tions are brought in [8], considering λmax = 2 and using a
first order polynomial. Spectral convolutional networks for
directed graphs are targeted in [4] and [5] with an alternative
Hermitian Laplacian matrix, called magnetic Laplacian. Sim-
ilarly, [9] derives another symmetric version for the Lapla-
cian of directed graphs. In [10], three symmetric matrices are
extracted and used to extend the convolution operation to di-
rected graphs. A symmetric graph convolutional autoencoder
which produces a low-dimensional latent representation from
a graph is introduced in [6], targeting clustering, link predic-
tion and visualization tasks. Other works regarding GNNs
are comprehensively covered in [11], however the paper is
not particularly focused on spectral GCNs.

1.3. Anomaly detection problem

The attempted task of anomaly detection in graph-structured
data arises from the dataset presented in [12]. The graph is
constructed from a list of money transfers among accounts
provided by Libra Internet Bank, hence we refer to the graph
using the name Libra. Structurally, nodes represent bank ac-
counts and the existence of a directed edge between two nodes
means that at least one transfer from source account to desti-
nation account has occurred; the weight of the edge is the
total amount transferred (possibly in multiple transactions).
There are no self-loops (none of the accounts is both origin
and destination) and between any two nodes there could be a
maximum of two edges with opposite directions, given that
transfers happened both ways.

Nodes are not directly labeled as anomalous, but rather
edges are. It means that a bank account is suspicious if it is
involved in a suspicious transfer. This way, anomalous nodes
(or alerts, as they are also called) can be part of multiple
doubtful transfers and an anomaly weight can be derived to
quantify the anomaly extent. The main constitutional details
of the Libra graph are:

• number of nodes: N = 385100;

• number of edges: 597165;

• number of anomalous nodes: 600;

• total weight of anomalies: 1034.

Nevertheless, a more comprehensive description of this
dataset and of the targeted anomaly detection problem (origi-
nated from money laundering detection) can be found in [12].

2. GRAPH FOURIER DOMAIN AND
CONVOLUTIONS

This section is dedicated to emphasizing several essential no-
tions of graph theory, aimed at the spectral graph convolu-
tion operation. We start by considering the generic and well-
behaved case of an undirected graph. Then, we move towards
the graphs of interest, directed and weighted, and underline
their deficits w.r.t. spectral GCNs.

Let G = (V, E), with |V| = N , be an undirected graph,
where V and E are the sets of vertices and edges, respectively.
Since G is undirected, E consists of unordered pairs of ele-
ments from V . The value wuv associated with such an un-
ordered pair (u, v) ∈ E is the weight of the edge between
vertices u and v. We enforce that all weights are positive.
The corresponding adjacency matrix A of G is

A (u, v) =

{
wuv, if (u, v) ∈ E .
0, otherwise.

(1)

From A, we can easily construct the diagonal degree matrix
D of G as

D = diag(A 1), (2)

where 1 is the all-ones vector. One can notice that the entries
of D are not degrees, but instead are sums of edge weights for
the case of weighted graphs.

The Laplacian matrix is a fundamental graph operator and
its most popular form is based on the combinatorial defini-
tion L = D − A. However, a more suitable alternative for
graph machine learning tasks is the symmetrically normalized
Laplacian proposed in [13]: Ls = D− 1

2LD− 1
2 .

The symmetrically normalized adjacency, D− 1
2AD− 1

2 ,
has eigenvalues in [−1, 1]. Accordingly, the resulting Lapla-
cian has eigenvalues in [0, 2].

In [8], authors suggest the so-called renormalization trick,
motivated by the desire to alleviate possible exploding or van-
ishing gradients when applying the Laplacian operator repeat-
edly. Thus, it is advised to start from the adjacency matrix
with added self-loops Ã = A + IN and compute the scaled
[8] Laplacian matrix

L̃s = D̃− 1
2 ÃD̃− 1

2 , (3)

where D̃ is defined like in (2) with Ã instead of A.
More about the impact of adding self-loops can be found

in [14], where the authors focus particularly on GNNs. Evi-
dently, both ways of defining the Laplacian, L and Ls, yield
symmetric matrices and, moreover, the positive nature of
the weights enforced earlier makes the Laplacian positive
semidefinite.



The Fourier transform of x, x̂ ∈ RN , and its inverse,
which enable spectral filtering operations [7], are defined as{

x̂ = UTx

x = Ux̂,
(4)

with L = UΛUT , where U (Fourier basis) is the complete
set of orthonormal eigenvectors of the Laplacian and Λ is the
diagonal matrix of eigenvalues (graph frequencies) – which
are real and nonnegative.

In [7], the construction of a convolutional filter through a
polynomial parametrization is proposed. Consequently, poly-
nomial filters of order K of the Laplacian are K-localized. In
[15], the filter is expressed as a truncated expansion of Cheby-
shev polynomials:

gθ (Λ) =

K−1∑
k=0

θkTk(Λ̃), (5)

where Tk (t) = 2tTk−1 (t) − Tk−2 (t), with T0 = 1 and
T1(t) = t, is the Chebyshev polynomial of order k and θ ∈
RK is a vector of filter coefficients. The graph signal filtering
operation, denoted ∗G , becomes

gθ ∗G x = gθ

(
L̃s

)
x =

K−1∑
k=0

θkTk(L̃s)x, (6)

where Tk(L̃s) ∈ RN×N is the polynomial filter.

3. PROPOSED APPROACH

Our problem has a directed graph as the underlying data struc-
ture. The filtering procedure presented so far, unfortunately,
does not generalize because of the asymmetric nature of the
adjacency matrix and, implicitly, of the Laplacian. Besides
offering no guarantees regarding the existence of a full set
of real eigenvalues, there are also no guarantees about their
bounds for such matrices.

We are focused on detecting graph anomalies by means
of a GCN architecture, hence we attempt to apply the filtering
procedure described in Section 2 on directed graphs in accor-
dance with the spectral graph theory and with minimal infor-
mation loss. Our approach makes use of two Laplacian ma-
trices, derived from the symmetrized and skew-symmetrized
adjacencies:

Asym =
1

2

(
A+AT

)
,

Askew =
1

2

(
A−AT

)
.

(7)

A weight of the symmetric matrix represents the average
amount transferred between two nodes, while a weight of the
skew-symmetric matrix represents the difference with respect

to the average of the transferred amount. One may see the
transformation as the application of a Haar operator to the
amounts transferred between two nodes.

The Laplacian matrix constructed using Asym is, consti-
tutionally, equivalent to the Laplacian of an undirected graph,
therefore suitable to the notions from Section 2. Similarly
with (2), we build a quasi-degree diagonal matrix

Dskew = diag (|Askew| · 1) , (8)

where |A| denotes the matrix whose elements are the absolute
values of the elements of A.

Proposition 1 The eigenvalues of the normalized skew-
symmetric adjacency matrix

D− 1
2

skewAskewD
− 1

2

skew (9)

are purely imaginary and have subunitary absolute values.

Proof. The matrix (9) is skew-symmetric, hence it has
eigenvalues on the imaginary axis. Also, it is similar with the
matrix

D− 1
2

skew

(
D− 1

2

skewAskewD
− 1

2

skew

)
D

1
2

skew = D−1
skewAskew.

This matrix has zeros on the diagonal and the sum of the ab-
solute values of the elements on each row is less than 1. By
Gerschgorin’s circle theorem [16], its eigenvalues lie inside
the unit disk.

As a result, the spectral properties of the normalized
skew-symmetric adjacency matrix are similar to those of the
symmetric one and its use in spectral GCNs should be as
well-behaved as in the symmetric case.

Our anomaly detection method relies on a pair of neural
networks in the autoencoder fashion [6], hence we refer to it
as DualGCN. The two networks are identical and share the
same weights and input graph signals, however the convolu-
tional layers differ; both use the Laplacian (3), however the
first network employs Asym, whereas the second network has
the Laplacian based on Askew.

We feed graph signals into each of the twin networks with
the goal of learning a representation to the best extent. Each
layer is a filter [7] [8] constructed from a truncated expansion
of Chebyshev polynomials [15]. Considering (6), the propa-
gation rule for a layer can be generalized as

X(l+1) = σ

(
K−1∑
k=0

Tk(L̃)X(l)Θ(l)

)
, (10)

where Θ(l) represents the learnable filter parameters of the
layer and σ the nonlinearity, our choice being ReLU.

Compared to [8], which addresses the task of semi-
supervised classification, we are concerned with the un-
supervised approach. Our dataset has two clearly unbal-
anced classes, anomalies accounting for less than 0.16%
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Fig. 1. DualGCN architecture with 4 input signals and con-
catenation linear layer, latent representation shown in red.

(600/385100 vertices). We expect that our trained model
fails in properly learning the anomalies, thus having a notice-
ably greater representation error for such nodes. Following
this logic, we can see the error of the model as an anomaly
score and directly use it for evaluation purposes.

Figure 1 depicts a DualGCN architecture, with 4 input
signals forwarded through the twin autoencoders. We choose
a factor of 1

2 to decrease and increase the dimensionality in
the encoder and decoder, respectively. Considering this, the
architecture from Figure 1, with an input x ∈ RN×4, can
at most produce a latent representation space of dimension
N × 1. As can be noticed, each of the twin networks yields a
representation of the input graph signals, i.e. x̂sym ∈ RN×4

and x̂skew ∈ RN×4. We concatenate these intermediate out-
puts and the result x̂c ∈ RN×8 is a representation with a di-
mension double than the input. Then, the final representa-
tion is obtained by means of a linear layer, this way assuring
an output x̂ ∈ RN×4, identical in size to the input x and so
enabling the possibility to directly compute a representation
error to further serve as anomaly score.

4. RESULTS

To evaluate the presented method on the aforementioned
anomaly detection problem, we have performed 10 individual
rounds, i.e., 10 unsupervised training sessions on the Libra
graph, each followed by an evaluation. We have employed
4 graph signals: number of transactions incoming/outgoing
(Nt I/O), total amount incoming/outgoing (Ta I/O). The first
two are available directly in the dataset and the latter ones
are computed with ease. Following [8], we have chosen
K = 1 the order of the Chebyshev polynomial. The learning
rate used throughout the experiments was 0.1 and the loss
function used to determine the representation error was L1.

With an identical setup, we evaluate autoencoder models
based on Asym alone, identified as SymGCN, and based on
the magnetic Laplacian [4] real and imaginary components,

Table 1. Details of the evaluated neural network models

Model Input signals Signals Weights Latent
transf. transf. dim.

1 Nt I/O none none 1
2 Nt I/O none log 1
3 Nt I/O log none 1
4 Nt I/O log log 1
5 Ta I/O none none 1
6 Ta I/O none log 1
7 Ta I/O log none 1
8 Ta I/O log log 1
9 Nt I/O, Ta I/O none none 2

10 Nt I/O, Ta I/O none log 2
11 Nt I/O, Ta I/O log none 2
12 Nt I/O, Ta I/O log log 2
13 Nt I/O, Ta I/O none none 1
14 Nt I/O, Ta I/O none log 1
15 Nt I/O, Ta I/O log none 1
16 Nt I/O, Ta I/O log log 1

denoted by MagNet. Table 1 shows the details of the eval-
uated neural models. By ‘log’ transformation we mean that
the natural logarithm is applied to Nt I/O and Ta I/O as input
graph signals, or to Ta I/O as weight in the Laplacian.

We further evaluate the detection capability of our ap-
proach against several classical algorithms (non neural net-
work), each computed similarly, in 10 rounds: CALLI [17] –
anomaly score embedding the weights and directions of the
edges, together with the community structure of the graph;
EGO [12] – anomaly detection technique leveraging engi-
neered features of the graph and Isolation Forest [18]; GAW
[19] – statistical anomaly score resulting from geometric av-
erage of weights and the standardised node degrees. Since
CALLI and GAW are directly affected by the weights of the
edges, we perform experiments both with logarithmic trans-
formation and without, same as for models in Table 1.

To keep the results concise and comprehensible, we av-
erage the detection metrics over the 10 individual rounds of
each method. We report the performance for the first 0.1%,
0.2%, 0.5%, and 1% of the most anomalous detected nodes,
taking the anomaly weights (number of suspicious transac-
tions in which a node is involved) into account. Moreover,
the report also includes the unweighted detection results,
which simply mean the number of anomalous nodes. Sum-
marizing, the structure of the table containing the report is:
tpr p% – true positives rate for the first p% weighted most
anomalous nodes detected; an p% – number of true anoma-
lous nodes among p% unweighted most anomalous nodes
detected; auc 1% – area under the tpr curve for the 1%
weighted nodes with highest anomaly scores.

For brevity, out of the 4 models described in each of the
4 families of input graph signals from Table 1, we display the



Table 2. Libra graph results
Method tpr 0.1% tpr 0.2% tpr 0.5% tpr 1% auc 1% an 0.1% an 0.2% an 0.5% an 1%

DualGCN 3 0.0725 0.1218 0.2417 0.3517 0.2186 23.00 48.00 104.50 162.10
SymGCN 3 0.0566 0.1143 0.2221 0.3304 0.2031 17.00 45.20 98.50 152.10
MagNet 3 0.0000 0.0003 0.0021 0.0065 0.0027 0.00 0.30 1.70 4.50

DualGCN 4 0.0725 0.1217 0.2419 0.3512 0.2186 23.00 47.90 104.70 162.20
SymGCN 4 0.0558 0.1066 0.2149 0.3176 0.1951 17.50 40.50 91.70 145.50
MagNet 4 0.0463 0.0875 0.1895 0.2921 0.1731 14.40 32.30 80.60 132.00

DualGCN 5 0.3086 0.4578 0.6762 0.8259 0.6135 115.50 199.20 337.10 440.00
SymGCN 5 0.2669 0.4033 0.6162 0.7725 0.5589 103.00 178.50 307.30 413.90
MagNet 5 0.0016 0.0023 0.0048 0.0069 0.0043 1.40 2.00 4.20 6.00

DualGCN 6 0.3074 0.4588 0.6758 0.8276 0.6130 114.80 198.80 336.90 441.90
SymGCN 6 0.2846 0.4299 0.6416 0.7940 0.5828 108.60 190.00 320.60 423.90
MagNet 6 0.3018 0.4351 0.6510 0.7971 0.5909 110.60 186.20 321.30 420.90

DualGCN 9 0.3088 0.4576 0.6760 0.8259 0.6135 115.70 199.10 337.00 440.00
SymGCN 9 0.1976 0.2953 0.4606 0.6220 0.4270 77.00 128.10 220.20 315.20
MagNet 9 0.0021 0.0028 0.0044 0.0073 0.0045 1.80 2.40 3.90 6.30

DualGCN 10 0.3086 0.4580 0.6760 0.8263 0.6134 115.50 199.30 337.00 440.40
SymGCN 10 0.2734 0.4106 0.6189 0.7697 0.5614 106.30 179.30 307.80 414.00
MagNet 10 0.3069 0.4541 0.6719 0.8197 0.6091 114.30 196.80 334.40 435.80

DualGCN 13 0.3094 0.4574 0.6760 0.8259 0.6138 116.00 199.00 337.00 440.00
SymGCN 13 0.3094 0.4578 0.6760 0.8259 0.6138 116.00 199.20 337.00 440.00
MagNet 13 0.0003 0.0019 0.0066 0.0131 0.0064 0.20 1.20 4.50 8.80

DualGCN 14 0.3094 0.4574 0.6760 0.8259 0.6138 116.00 199.00 337.00 440.00
SymGCN 14 0.3088 0.4584 0.6760 0.8259 0.6138 115.70 199.50 337.00 440.00
MagNet 14 0.3055 0.4484 0.6665 0.8187 0.6062 113.40 194.20 330.80 435.20

GAWlog 0.1769 0.3512 0.5871 0.7473 0.5247 71.60 152.50 290.60 406.10
GAW 0.1768 0.3588 0.6150 0.7601 0.5402 71.40 156.50 303.90 413.20

CALLIlog 0.0832 0.1412 0.2400 0.3273 0.2173 29.20 56.30 109.60 155.40
CALLI 0.0972 0.1518 0.2399 0.3154 0.2194 35.10 63.70 111.40 153.50
EGO 0.4004 0.5051 0.6559 0.7444 0.6016 160.90 225.90 317.40 377.20

results only for the configurations which produced the best
two AUC values within each family. Table 2 presents in bold
the largest metric value for each model.

The results for models 1–4 are poor, showing that the
number of transaction alone is not a relevant input signal for
our problem. Employing Ta I/O as input signals in 5–8 with
a model having the same latent dimension 1, we can observe
that the transferred amounts, although structurally included in
the networks within the Laplacians as weights, have the great-
est discriminative power in uncovering anomalous nodes. Du-
alGCN has the best detection performance, closely followed
by MagNet when the weights transformation is present.

Further combining Nt I/O and Ta I/O in models 9–12 with
a latent size 2, there are no decisive improvements for Du-
alGCN and SymGCN. For models 13–16, DualGCN keeps
obtaining top results and SymGCN is finally able to match
them. Overall, the behavior of DualGCN is quite robust and
shows good results for most of the models, while SymGCN
obtains its best results only in the most complex configuration
(deepest network).

MagNet is constantly outperformed by our networks.
Note also that weights transformation plays a crucial for
MagNet, the results without log transformation being ex-
tremely poor, due to the lack of phase scaling.

When compared to non neural network detection tech-
niques, DualGCN is outperformed only by EGO and only
with respect to the first 0.1% and 0.2% of the most anoma-
lous bank accounts. Comparing DualGCN and EGO in terms
of auc 1%, we can see relatively close values. Oppositely,
large discrepancies can be observed in an p%. We can deduce
that EGO tends to find nodes with larger anomaly weights,
whereas DualGCN uncovers more anomalous nodes. A simi-
lar interpretation explains the results of GAW.

Although DualGCN is composed of a pair of twin au-
toencoder networks, the training operation takes less than for
SymGCN. We set an early stopping criterion in order to end
the training when the loss over the last 10 epochs varies by
less than 1%. Throughout the experiments, the training of
DualGCN models consistently finishes in under 20 epochs,
roughly translated to less than 3.5 seconds for the most com-



plex DualGCN models (13–16), and less than 1.8 seconds for
the simpler ones (1–12), on an Apple MacBook M2 Pro. On
the other hand, SymGCN and MagNet are more difficult to
train and require a lot more epochs (sometimes more than
100). Their training may take more than 10 seconds on the
same machine. For comparison, EGO needs about 30 min-
utes for computing the 14 features used for anomaly detec-
tion, while CALLI and GAW require 5-10 minutes.

5. CONCLUSIONS

In this paper, we have proposed a GCN architecture for
directed graphs, based on their symmetrized and skew-
symmetrized Laplacian matrices. Then, we tackled the
anomaly detection problem in a real graph and compared
the results obtained with the proposed DualGCN method
against several other approaches. Our method proved to be
superior, outperforming both classical and neural network
techniques. Moreover, the experiments on the Libra graph
showed that DualGCN is computationally inexpensive and
feasible for real use-cases, thus hinting towards the possibil-
ity of targeting anomaly detection problems in applications
from a multitude of domains.
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