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Abstract—We propose an extension of the Angle-Based Outlier
Detection (ABOD) technique by combining it with a Dictionary
Learning (DL) problem. The ABOD method benefits from this
change by constructing an inlier base with the vector atoms
obtained from the DL problem. Our method computes the
dictionary D and calculates the angles between the data points
in the feature space and the obtained atoms. We show that using
a dictionary in the ABOD method can improve the results in
anomaly detection tasks. Generally, the atoms can capture the
direction of the inliers, thus better isolating the outliers.

Index Terms—angle-based outlier detection, dictionary learn-
ing, anomaly detection, clustered anomalies

I. INTRODUCTION

Dictionary Learning (DL) is a representation learning tech-
nique that aims to find a sparse approximation for a collection
of N signals, Y . Signals are organized in a matrix with N
columns (samples), each with a size of m. The problem is
solved by computing a dictionary D of size m×n and a sparse
representation matrix X of size n×N such that a satisfactory
approximation Y ≈ DX is achieved. The problem can be
formulated as follows

min
D,X

∥Y −DX∥2F
s.t. ∥xℓ∥0 ≤ s, ℓ = 1 : N

∥dj∥ = 1, j = 1 : n,

where we define ∥ · ∥0 as L0 norm (the number of nonzero
entries) and s represents the sparsity constraint.

The standard dictionary learning problem can be effectively
solved using established strategies. To address the challenges
posed by its non-convex nature and high dimensionality, the
optimization problem is organized in two steps: sparse coding
and dictionary update. The procedure is known as DL by
Alternate Optimization. The approach can yield satisfactory
local solutions by alternating between these two stages for
a specific number of iterations. An iteration involves first
computing the sparse representation X , while the dictionary
D is fixed. In the next stage, the dictionary is updated,
fixing the coefficients representation. An Orthogonal Matching
Pursuit (OMP) [1] method can be employed for the sparse

This work was supported by a grant of the Ministry of Research, Innovation
and Digitization, CNCS - UEFISCDI, project number PN-III-P4-PCE-2021-
0154, within PNCDI III.

coding step. For the dictionary update stage, there are several
well-known methods [2]. A usual choice can be the K-SVD
[3] algorithm or its approximate version, named AK-SVD [4].

Anomaly detection, also termed outlier detection, represents
the task of identifying samples that diverge from the general
representation in the dataset. This task can be solved in both a
supervised and unsupervised manner. In this paper, we concen-
trate on the unsupervised one. In the literature, there are several
well-known libraries dedicated to outlier detection problems,
such as the Python Outlier Detection (PyOD) toolbox [5],
which contains a variety of unsupervised algorithms. Some of
the most notable algorithms are: Isolation Forest (IForest) [6],
k-Nearest Neighbors (kNN), One-Class SVM (OCSVM) [7],
Minimum Covariance Determinant (MCD) [8], [9] and Angle-
Based Outlier Detection (ABOD) [10]. A more comprehensive
anomaly detection benchmark is ADBench [11], which stands
out for its extensive coverage. This toolbox evaluates the
performance of 30 different anomaly detection algorithms over
57 datasets (47 widely used real-world datasets and 10 more
complex datasets from Computer Vision and Natural Language
Processing). Compared to PyOD, ADBench introduces su-
pervised and semi-supervised methods for anomaly detection
tasks.

This paper presents an adaptation of the unsupervised algo-
rithm named ABOD, also available in PyOD. We demonstrate
that this method is not invariant to clustered anomalies. Since
the anomalies are organized in clusters, there is a risk that
the outlier detection method will classify the cluster as a
cluster of normal data points. To overcome this bottleneck,
we propose using a Dictionary Learning algorithm to isolate
the outliers better. The paper is organized as follows. Section
II introduces the anomaly detection problem and is divided
into two subsections corresponding to different approaches to
the problem. Subsection II-A presents several strategies of
dictionary learning methods adapted for anomaly detection.
Subsection II-B presents the Angle-Based Outlier Detection
method and its approximation forms. Section III contains our
main contribution, which is a mix of the previously mentioned
methods; specifically, instead of computing angles between a
sample vector and its neighbors, we calculate angles between
the sample vector and the atoms of a learned dictionary. In
section IV, we present the obtained results and algorithm



performances over the PyOD benchmark datasets. We give
our main conclusions in Section V.

II. ANOMALY DETECTION

A. Anomaly Detection via Dictionary Learning

Dictionary Learning (DL) problems can be adapted for
anomaly detection tasks. A natural way to do this is to solve
the problem using all available data Y , then compute the
representation error

E = Y −DX,

and identify the outliers based on the magnitude of the error
norm, ∥ei∥, which is more likely to be larger for anomalies
than for normal signals. The assumption behind this strategy is
that the dictionary should be able to capture the representation
direction of the inliers since the number of outliers is much
smaller. Due to their dissimilarity, we expect to obtain high
errors for representing the outliers as a natural trade-off to
minimize the objective. Effective anomaly detection should use
under-complete dictionaries with small sparsity constraints.
This ensures that the representations are optimized to favor
similarity for normal signals. We note that this approach is
unsupervised; no label information is needed.

To improve the representation of inliers, a selection pro-
cedure can also be employed (Selective DL [12]) during
optimization. First, during the sparse coding stage, we only
use a subsample of available signals to reduce the number of
anomalies during training. In the dictionary update stage, the
samples with the worst representation errors are eliminated,
and the matrix D is updated only with the rest of the
signals. Selective DL demonstrates good behavior in anomaly
detection problems.

B. Angle-Based Outlier Detection

ABOD is based on the Angle-Based Outlier-Factor (ABOF)
method of mining high-dimensional data to identify outliers. In
a high-dimensional space, the distances between data points
become less meaningful. This method demonstrates that the
angles between distance vectors of points in a vector space
are more suitable for anomaly detection tasks in a high-
dimensional space. The discrimination between the inliers and
the outliers is made by comparing the angles to other points.
The motivation of the ABOF method is that inliers would be
organized in clusters of data points. The angles between the
lines formed by joining an inlier with two other points should
have quite different values, since other points usually surround
an inlier; this leads to significant variance of the angles. On
the other side, a similar construction for outliers should lead to
more uniform angles, since the outliers are positioned outside
clusters. Therefore, we expect the variance of the angles to be
small.

The ABOF approach provides a way to quantify the diver-
gence in directions of objects relative to each other, helping
to identify outliers in high-dimensional data based on the
observed angles between distance vectors. The method can
be formulated as follows.

Considering D ⊆ Rm, the space of the data points, and three
relevant points xA⃗,xB⃗ and xC⃗ , we express the Angle-Based
Outlier-Factor ABOF (xA⃗) with respect to the anchor xA⃗ as
the variance over the angles between the difference vectors of
xA⃗ to all the other pairs, weighted by the distance between
the points

V ARxB⃗ ,xC⃗∈D

( (
xA⃗ − xB⃗

)⊤ (
xA⃗ − xC⃗

)
∥xA⃗ − xB⃗∥2 · ∥xA⃗ − xC⃗∥2

)
.

Taking into consideration the construction of triplet pairs,
the current method has a time complexity of O(n3). An
approximation algorithm named FastABOD can be used to
address this issue. This method approximates the Angle-Based
Outlier Factor (ABOF) using only a small subsample of the
available data points. In the FastABOD method, only the
points with the strongest weights are considered for the vari-
ance computation. Typically, the k-nearest neighbors method
is used to identify relevant data points. This approximation
is more effective, especially in low-dimensionality datasets,
where the distance is more meaningful. Using nearest neigh-
bors provides a better approximation of ABOF. The FastA-
BOD method is more suitable for large datasets, reducing the
computation to O(n2 + nk2), where k represents the number
of nearest neighbors. On the other hand, the algorithm’s
performance depends on the selected neighbors. Using a large
number of neighbors improves the quality of the results but
also affects the time complexity. Given the large nature of the
available datasets, in practice, the method used is FastABOD.
However, this method is not invariant to clustered anomalies;
Figure 1 shows an example of this type of anomaly. Since the
anomalies are structured in a cluster, this might be considered
a cluster of standard samples during classification. In the
spirit of the ABOF method, the supposed anomalies will be
the inliers having significant deviation from the center of the
inliers clusters. Clearly, these kinds of points will obtain small
variances in terms of angle distances.
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Fig. 1. Synthetic Dataset with Clustered Anomalies



This method cannot identify the outliers for scenarios where
the anomalies are organized in data clusters larger than the
number k. In this case, the data points within the anomalous
clusters, the angles between them, and other points in the same
cluster will have a consistent variance, similar to the angles
between the inliers. Clustered anomalies might not show low-
angle variability.

There are other approximation methods available. For ex-
ample, in [13], the authors use a random projection-based
technique to estimate the ABOF for the data points. This
method achieves near-linear time complexity and can be easily
parallelized. On the other hand, other adaptations exist, such
as the concept of depth L1 [14]. This one only requires a
quadratic time, making it more efficient than the original
form. L1 depth can be estimated using a sampling method
named SamDepth. These methods obtain competitive results,
significantly reducing the execution complexity.

The ABOD function can be adapted using different distance
metrics. For example, kernel methods can be used by substitut-
ing the scalar product with a kernel function. In this way, the
data points are reprojected into the kernel space. The kernel
enables new representation spaces, which might favor outlier
identification. The initial definition of ABOF can be adapted
by extending the distance vectors using a nonlinear function
φ(·). Furthermore, the formulation is computed following the
kernel trick, in which the scalar product φ(x)⊤φ(y) is changed
with a suitable kernel function

V ARxB⃗ ,xC⃗∈D

(
φ
(
xA⃗ − xB⃗

)⊤
φ
(
xA⃗ − xC⃗

)
∥φ
(
xA⃗ − xB⃗

)
∥2 · ∥φ

(
xA⃗ − xC⃗

)
∥2

)
.

The squared norm ∥φ
(
xA⃗ − xB⃗

)
∥2 can be rewritten in

the following form φ
(
xA⃗ − xB⃗

)⊤
φ
(
xA⃗ − xB⃗

)
, which also

leads to a kernel function k
(
xA⃗ − xB⃗ ,xA⃗ − xB⃗

)
. For the

RBF kernel, since the denominator is equal to 1 (it becomes
negligible), we choose to normalize the cosine distance be-
tween the directions of the representation with the squared
norm of the original vectors:

V ARxB⃗ ,xC⃗∈D

(
φ
(
xA⃗ − xB⃗

)⊤
φ
(
xA⃗ − xC⃗

)
∥xA⃗ − xB⃗∥2 · ∥xA⃗ − xC⃗∥2

)
.

For any other kernel function, the denominator is computed
according to the kernel function, ∥φ

(
xA⃗ − xB⃗

)
∥2 = k(xA⃗−

xB⃗ ,xA⃗ − xB⃗) We name this method Kernel Angle-Based
Outlier Detection (KABOD).

On the other hand, we propose adapting the kernel version
by extending the features into the kernel space. Compared to
the original formulation, the data points are first lifted into
the kernel space. After that, we calculate the distance vectors,
which will be further used for the angle orientation

V ARx
B⃗
,x

C⃗
∈D

(
(φ (xA⃗)− φ (xB⃗))

⊤ (φ (xA⃗)− φ (xC⃗))

∥φ (xA⃗)− φ (xB⃗) ∥2 · ∥φ (xA⃗)− φ (xC⃗) ∥2

)
.

Since the data points are lifted to an infinite space, we name
this method an extension of the previous, Extended Kernel
Angle-Based Outlier Detection (EKABOD). A good choice
for the kernel function might be the Radial Basis Function

(RBF) k(x,y) = exp (−γ||x− y||22) or the Polynomial Ker-
nel (Poly) k(x,y) = (γx⊤y + α)β , where γ, α and β are
hyperparameters.

III. ANGLE-BASED DICTIONARY LEARNING

This section introduces our main contribution, Angle-Based
Dictionary Learning (ABDL). This is a combination of the
prior methods. We first solve a Dictionary Learning problem to
generate a basis for the ABOF method. Then, we use the atom
vectors to calculate the distance vectors and angle variations.
Additionally, the approximation is determined by the k-nearest
neighbors in relation to the dictionary atoms. As the dictionary
should capture the direction of representation of the inliers, we
anticipate a small variance for the outliers.

During the optimization process, the dictionary atoms will
mostly capture the pertinent directions in relation to the inliers.
It is important to note that we guarantee that the atoms are
aligned with the current anchor for calculating the vector
distances. For example, for a given data point xA and two
atoms d1, d2 we first align the atoms with the current anchor

d̂1 = sign(d⊤
1 xA) · d1

d̂2 = sign(d⊤
2 xA) · d2

and after this stage, we compute the ABOF as follows

ABDL(xA⃗) = V ARxd1
,xd2

∈D

(
x⊤
d1A

xd2A

∥xd1A∥2 · ∥xd2A∥2

)
,

where we denote

xd1A = xA − d̂1

xd2A = xA − d̂2.

This interpretation is in agreement with the kernel versions
presented in the previous subsections, which use the atom vec-
tors reprojected into the nonlinear space. The kernel version
calculates the variances on the basis of the kernel distances
relative to the dictionary atoms. The names used previously are
adapted to Kernel Angle-Based Dictionary Learning (KABDL)
for the standard form and Extended Kernel Angle-Based
Dictionary Learning (EKABDL) for the extended kernel form.

IV. EXPERIMENTS

In this section, we present the results of our experimental
tests. For our examinations, we followed the PyOD framework
[5], which is a comprehensive anomaly detection toolbox
containing 17 real-world datasets from a large collection of
outlier detection datasets of different domains (Outlier De-
tection DataSets - ODDS)1 and 10 unsupervised methods for
anomaly detection. Following the structure of this framework2,
we implemented 5 new strategies in the spirit of PyOD:
KABOD, EKABOD, ABDL, KABDL, and EKABDL. Figure I
summarizes the datasets used. In all of our tests, each dataset
was divided into 60% for training and 40% for testing. To

1https://odds.cs.stonybrook.edu/
2https://pyod.readthedocs.io/en/latest/benchmark.html



Data #Samples # Dimensions Outlier Perc
arrhythmia 452 274 14.6
cardio 1831 21 9.61
glass 214 9 4.2
ionosphere 351 33 35.89
letter 1600 32 6.25
lympho 148 18 4.05
mnist 7603 100 9.2
musk 3062 166 3.16
optdigits 5216 64 2.87
pendigits 6870 16 2.27
pima 768 8 34.89
satellite 6435 36 31.63
satimage-2 5803 36 1.22
shuttle 49097 9 7.15
vertebral 240 6 12.5
vowels 1456 12 3.43
wbc 378 30 5.55

TABLE I
DATA SUMMARY

measure the performance of the methods, we computed the
receiver operating characteristic area under the curve (ROC
AUC) and the precision @ rank n score over ten independent
rounds with different initialization seeds. The presented results
are calculated as the mean of the ten rounds. We also measured
the execution time, but we will only briefly compare the
original ABOD method and the new ones.

We performed our tests on a Desktop PC, including a
processor with a base frequency of 2.90 GHz (Max Turbo
Frequency of 4.80 GHz) and 80GB RAM. To select the values
of the hyperparameters, we performed a grid search. More
precisely, we have conducted tests with different numbers of
atoms n ∈ {10, 20, 50}, sparsity levels s ∈ {2, 3, 5}, and num-
ber of neighbors k ∈ {3, 5, 8}. All dictionary learning methods
involve the AK-SVD method for the dictionary training stage.
For the update of the coefficient matrix, we used the OMP
method. During our evaluation, we concluded that a maximum
number of 10 iterations is enough to obtain reasonable results.
We conclude that small dictionaries can better produce the
representation directions of the inliers. Moreover, fewer atoms
are favorable for computing an appropriate basis for the Angle-
Based Outlier Detection method. We used γ = 1/m for the
kernel methods that depend on the number of features. For the
polynomial kernel, we used α = 1 and β = 3. Here, we only
include the results obtained with the RBF kernel function. The
hyperparameters for these results are n = 50 atoms, a sparsity
level of s = 3, and k = 5 neighbors. We make public the
full results and the source code of our implementations at
https://asydil.upb.ro/software/.

The obtained results demonstrate the excellent behavior of
our methods. We successfully improved the results on both
the ABDL and DL anomaly detectors for several datasets.
In Table II, we include the ROC AUC performance for all
PyOD methods, including ours. The precision rank score is
available in Table III. We do not include the execution times,
but we conclude that our methods depend on the execution
time of the DL problem. Since the dictionary learning problem
is computationally costly, most of the time is spent during

dictionary training. Moreover, this depends on the dictionary
configuration and the dimensions of the dataset.

The results show that the mix between the ABOD and DL
methods is beneficial. ABDL usually outperforms its ancestor
methods by combining their strengths. DL is able to produce
atoms with good representation power for inliers. Furthermore,
ABOD can be successfully applied by computing the angles
of the directions between data points and dictionary atoms,
which appears to succeed in identifying many of the outliers.

The most relevant results, compared to the original ABOD
algorithm in terms of ROC AUC performance, are obtained for
the following datasets: cardio (improvement with 36%), musk
(improvement with 70%), pendigits (improvement with 24%),
and shuttle (improvement with 36%). For several datasets, our
methods are efficient enough to obtain results in the top three
of the ranking. For example, KABDL obtains third place for
cardio and second place for pendigits dataset, while ABDL
obtains the second place for the wbc dataset. Regarding the
precision rank score, we also observed an improvement in the
results. This shows that the proposed methods are invariant
to the imbalanced nature of the anomalies or the clustered
structure.

We performed some specific tests to understand better the
roles of the sparsity level and the number of neighbors in
our problem. We first fixed the parameters of our problem
to n = 50 atoms and k = 5 neighbors. We then computed
the ROC AUC performance at different levels of sparsity
s ∈ {2, 3, 5, 8, 10, 15, 20, 25}. In Figure 2, we show the results
obtained on the cardio dataset. We observe here that a sparsity
level larger than the number of neighbors facilitates better
identification of the outliers. Since the dictionary basis is over-
specialized in the representation of the inliers, we expect to
obtain better results with large sparsity levels. In this case, we
can easily identify a threshold value, s = 10, after which the
results do not improve. Moreover, the DL performance starts
to decrease.

Another interesting experiment is shown in Figure 3 for
the pendigit dataset. This time, we fixed the sparsity level to
s = 5 and performed tests with different numbers of neighbors
k ∈ {3, 5, 8, 10, 15, 20, 25, 50}. The results demonstrate that
the number of neighbors should be comparable with the
sparsity level. A few numbers of neighbors ensure good
results, but the most relevant results are obtained when the
number is near the sparsity level. For ABOD, KABOD, and
EKABOD, it is clear that the best results are obtained when
the complete dataset is used for variance computation; ROC
AUC performance improves with the number of neighbors.
On the other hand, for ABDL, KABDL, and EKABDL, it is
clear that a small number of neighbors is sufficient to obtain
good results. This demonstrates the excellent behavior of the
dictionary matrix, which captures the inliers representation.

Overall, the mean ROC AUC score for all the datasets
is 70% for ABOD, 69% for DL and 75% for ABDL. The
ABDL has been shown to outperform its rivals in terms of
performance.



Data CBLOF FB HBOS IForest KNN LOF MCD OCSVM PCA ABOD KABOD EKABOD DL ABDL KABDL EKABDL
arrhythmia 0.7838 0.7780 0.8219 0.7996 0.7861 0.7786 0.7789 0.7811 0.7815 0.7687 0.7777 0.7674 0.7717 0.7586 0.7662 0.7653
cardio 0.8100 0.5867 0.8351 0.9184 0.7236 0.5735 0.8165 0.9348 0.9503 0.5691 0.5494 0.5736 0.6725 0.9191 0.9317 0.9233
glass 0.8412 0.8726 0.7388 0.7497 0.8507 0.8644 0.7900 0.6323 0.6747 0.7950 0.7869 0.7988 0.7313 0.6748 0.6794 0.67427
ionosphere 0.8971 0.8730 0.5614 0.8541 0.9267 0.8753 0.9556 0.8419 0.7962 0.9247 0.9289 0.9212 0.9302 0.8373 0.8407 0.83754
letter 0.7830 0.8660 0.5926 0.6401 0.8765 0.8593 0.8074 0.6118 0.5283 0.8782 0.9077 0.8644 0.8370 0.6076 0.6066 0.61004
lympho 0.9673 0.9752 0.9956 0.9928 0.9745 0.9770 0.9104 0.9758 0.9846 0.9109 0.9411 0.9238 0.9647 0.9643 0.9782 0.92982
mnist 0.8404 0.7204 0.5741 0.8067 0.8481 0.7160 0.8666 0.8528 0.8526 0.7815 0.7770 0.7895 0.8053 0.8147 0.8397 0.82144
musk 1 0.5262 0.9999 0.9998 0.7985 0.5286 0.9999 1 0.9999 0.1844 0.2141 0.1783 0.7948 0.8491 0.9560 0.89403
optdigits 0.7692 0.4433 0.8732 0.7060 0.3707 0.4500 0.3979 0.4997 0.5085 0.4667 0.4695 0.4339 0.3692 0.4597 0.4121 0.48013
pendigits 0.8930 0.4595 0.9238 0.9496 0.7486 0.4697 0.8343 0.9303 0.9352 0.6877 0.6676 0.6913 0.6625 0.9240 0.9378 0.91931
pima 0.6578 0.6234 0.6999 0.6779 0.7078 0.6270 0.6752 0.6215 0.6481 0.6793 0.6832 0.6908 0.5682 0.6541 0.6446 0.65366
satellite 0.7494 0.5571 0.7581 0.6937 0.6836 0.5572 0.8030 0.6622 0.5988 0.5713 0.5829 0.5776 0.3894 0.5290 0.5792 0.49618
satimage-2 0.9992 0.4570 0.9804 0.9938 0.9536 0.4577 0.9959 0.9978 0.9821 0.8189 0.8107 0.8321 0.4744 0.8907 0.9546 0.78554
shuttle 0.6272 0.4723 0.9854 0.9971 0.6537 0.5263 0.9903 0.9917 0.9898 0.6234 0.6149 0.6234 0.7511 0.9888 0.9895 0.98764
vertebral 0.4330 0.4165 0.3262 0.3927 0.3816 0.4081 0.3985 0.4430 0.4026 0.4261 0.3692 0.4122 0.3425 0.4089 0.4067 0.41868
vowels 0.9222 0.9425 0.6726 0.7596 0.9680 0.9409 0.8076 0.7802 0.6026 0.9605 0.9517 0.9629 0.8608 0.6740 0.7045 0.66398
wbc 0.9200 0.9325 0.9516 0.9307 0.9366 0.9348 0.9210 0.9318 0.9158 0.9047 0.9186 0.9183 0.8821 0.9483 0.9420 0.94284

TABLE II
ROC AUC

Data CBLOF FB HBOS IForest KNN LOF MCD OCSVM PCA ABOD KABOD EKABOD DL ABDL KABDL EKABDL

arrhythmia 0.4538 0.4229 0.5110 0.4999 0.4463 0.4334 0.3995 0.4614 0.4612 0.3807 0.4390 0.3786 0.4311 0.4026 0.4258 0.4209
cardio 0.4296 0.1690 0.4476 0.4918 0.3322 0.1540 0.4156 0.5011 0.6090 0.2374 0.2219 0.2476 0.2928 0.4723 0.5284 0.5063
glass 0.0726 0.1476 0 0.0726 0.0726 0.1476 0 0.1726 0.0726 0.1702 0.0869 0.0869 0.1869 0.0726 0.0726 0.0392
ionosphere 0.7748 0.7055 0.3295 0.6474 0.8602 0.7063 0.8806 0.7000 0.5728 0.8441 0.8601 0.8480 0.8035 0.6707 0.6564 0.6694
letter 0.2396 0.3641 0.0715 0.0882 0.3311 0.3641 0.1932 0.1509 0.0874 0.3800 0.4253 0.3433 0.3083 0.1363 0.1243 0.1127
lympho 0.7516 0.7516 0.8466 0.8766 0.7516 0.7516 0.5183 0.7516 0.7516 0.4483 0.7516 0.6683 0.7433 0.7183 0.7516 0.1900
mnist 0.4023 0.3298 0.1188 0.3034 0.4204 0.3342 0.3462 0.3961 0.3846 0.3555 0.3618 0.3774 0.3686 0.3494 0.3793 0.3658
musk 1 0.2229 0.9783 0.9806 0.2733 0.1695 0.9888 1 0.9799 0.0507 0.0807 0.0478 0.2781 0.1872 0.4242 0.2267
optdigits 0 0.0244 0.2194 0.0271 0 0.0233 0 0 0 0.0060 0.0073 0.0060 0.0075 0.0046 0 0
pendigits 0.2397 0.0657 0.2979 0.3550 0.0984 0.0652 0.0892 0.3286 0.3186 0.0812 0.0574 0.0775 0.1041 0.2719 0.2775 0.2469
pima 0.4837 0.4480 0.5423 0.5023 0.5413 0.4555 0.4962 0.4703 0.4942 0.5192 0.5200 0.5296 0.4080 0.5069 0.4866 0.5035
satellite 0.5797 0.3901 0.5690 0.5576 0.4994 0.3892 0.6845 0.5345 0.4784 0.3902 0.4061 0.3995 0.2296 0.3968 0.4696 0.3393
satimage-2 0.9375 0.0555 0.6939 0.8775 0.3808 0.0555 0.6481 0.9355 0.8040 0.2130 0.2761 0.2570 0.0119 0.1502 0.4485 0.0090
shuttle 0.2944 0.0697 0.9551 0.9508 0.2183 0.1423 0.7500 0.9541 0.9501 0.1977 0.1900 0.1978 0.2980 0.9395 0.9500 0.9052
vertebral 0.0338 0.0643 0.0071 0.0533 0.0238 0.0505 0.0142 0.0238 0.0226 0.0600 0.0329 0.0600 0.0100 0 0 0.0071
vowels 0.3642 0.3224 0.1297 0.1960 0.5092 0.3550 0.2186 0.2790 0.1363 0.5710 0.5746 0.6173 0.3769 0.1187 0.1708 0.1236
wbc 0.4806 0.5187 0.5816 0.5087 0.4951 0.5187 0.4577 0.5124 0.4767 0.3060 0.4472 0.4304 0.5628 0.6465 0.5995 0.5882

TABLE III
RANK @N SCORE

5 10 15 20 25
s

0.65

0.70

0.75

0.80

0.85

0.90

0.95

RO
C

DL
ABDL
KABDL
EKABDL

Fig. 2. ROC AUC evolution with sparsity

V. CONCLUSIONS

This paper presents a novel algorithm for anomaly detection.
It is based on a combination of the Angle-Based Outlier
Detection technique and the sparse basis of the inliers ob-
tained through Dictionary Learning. The proposed method is
accompanied by two kernel versions, a classic and a lifted
one. The results show that the algorithms perform well in
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Fig. 3. ROC AUC evolution over # neighbors

terms of ROC AUC and precision rank score. Compared to
the original ABOD method, the ROC AUC performance was
improved by 7%, but for some datasets the improvement can
be significant, even up to 70%. On the PyOD benchmark, the
algorithm achieved competitive rankings with the state-of-the-
art.
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