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Abstract

We propose a variant of dictionary learning (DL) for sparse representations
where the atoms are cones instead of simple vectors. The most convenient
vector from a cone, called actual atom, is used to build the linear sparse
representation of a given signal. We present a DL algorithm suited for cone
atoms, which can update the dictionary without storing all the actual atoms
that are used in the representations of the training signals. Also, the algo-
rithm ensures that the cone atoms are disjoint and thus the representation
problem is well posed. We use the proposed cone DL for anomaly detection.
On a specific type of anomaly, called ’dependency’, the DL methods involv-
ing cone atoms are better than those from a reputed benchmark. They are
also better than standard DL.

Keywords: dictionary learning, sparse representations, anomaly detection,
unsupervised learning, cone atoms

1. Introduction

Dictionary learning (DL) for sparse representations is now a mature field,
comprising diverse problem formulations and algorithms for their efficient
solution, with numerous applications in classification, denoising, inpainting,
compressed sensing, and many others.

In the standard sparse representation problem, we are given a signal
y ∈ Rm and a dictionary D ∈ Rm×n, and the purpose is to find a vector
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x ∈ Rn with at most s nonzero elements such that ∥y−Dx∥2 is minimized;
s is the sparsity level. In DL, we have a collection of signals Y ∈ Rm×N and
the purpose is to design the dictionaryD such that ∥Y −DX∥2 is minimum,
where the representation matrix X ∈ Rn×N has at most s nonzeros on each
column. To avoid multiplicative indeterminacy, the columns of D, named
atoms, are normalized. This is the most common DL problem, where the
atoms are simply vectors.

Problem formulation. We propose here to extend the notion of atom
from a vector to an infinite set. More precisely, we consider dictionaries
made of cone atoms. A column d of D is the central vector of a cone C(d, ρ)
whose radius is ρ, in the sense that ∥a − d∥ ≤ ρ for all a ∈ C(d, ρ); all the
vectors in the cone have norm equal to 1. Figure 1 shows a 3D cone in a
sphere; the blue volume is a sector of the sphere; since ∥a∥ = 1, the set
C(d, ρ) is in fact a cap on the sphere. However, since we work with linear
combinations of atoms, the fittest name is that of cone.

For building sparse representations, we can use any vector from a cone as
an atom. Each atom dj has a cone C(dj , ρj) associated with it; so, the cone
radii may be different. The sparse representation problem is formulated as
follows:

min
x∈Rn

∥y −
∑n

j=1 ajxj∥2
s.t. ∥x∥0 ≤ s

aj ∈ C(dj , ρj), j = 1 : n

(1)

Here, we name aj actual atoms, since they are effectively used in the rep-
resentation. Figure 2 illustrates the linear combination of s = 2 atoms that
is nearest from a vector y. This optimal approximation is the projection of
y on the plane generated by a1 and a2; the actual atoms are such that the
plane is tangent to both cones, thus minimizing the distance to y. Note that
neither a1 nor a2 are the nearest vector from y in their respective cones.

The DL problem with cone atoms will be exposed later, but it is a natural
extension of (1). Essentially, given the signal matrix Y ∈ Rm×N , we need to
design the dictionary D of central atoms such that the representation error
(where actual atoms are used!) is minimum. It is clear that this problem is
more difficult than standard DL.

Contents of the paper. The remaining part of the introduction will dis-
cuss previous work and the relation of our contribution to it. Section 2
presents several considerations on the geometrical properties of the cones:
the volume occupied by a cone or by a linear combination of cones in the
(hyper)sphere, formulas for computing the distance between two cones and
an algorithm for the projection of a vector on a cone, which is essential
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Figure 1: A spherical sector (cone).

in building the other algorithms. Section 3 contains our DL algorithm for
dictionaries with cone atoms; it is based on a parallel atom update that
eliminates the necessity of storing the actual atoms; it also ensures that
cone atoms are disjoint. Since our application is anomaly detection, Sec-
tion 4 is dedicated to it; we present the problem and the datasets that we
use. Section 5 presents the numerical results and shows the advantages of
cone atoms for the specific case of dependency anomalies; we compare our
methods with those from a recent benchmark [1]. More results can be found
in the Appendices. The idea of sparse representations with cone atoms has
been presented in [2]; here, we extend it to DL, we discuss in more detail the
properties of cone dictionaries and we present a different set of experiments.

Previous work. Our proposal of dictionaries with cone atoms appears
to be the first where the atoms are definite infinite sets, although there
are several related approaches. In shift invariant dictionaries [3, 4], shifted
versions of an atom are also automatically taken into account. Extension
towards continuous shift can be made by grid refinement [5] or in the con-
text of group invariant dictionaries [6]. Convolutional DL [7] offers another
view to a similar problem, but with more representation freedom than in the
standard DL problem. Structured dictionaries offer the possibility to build
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Figure 2: Optimal approximation of a signal y with the linear combination x1a1 + x2a2

of two cone atoms.

combinations of atoms of size smaller than m in order to obtain a large num-
ber of possible atoms of size m that are not represented explicitly. Examples
are multi layer [8, 9], multi scale [10], and separable [11] dictionaries; in the
latter case, suited for image representation, the atoms are Kronecker prod-
ucts of smaller atoms and can also be seen as rank-1 matrices; in multi layer
dictionaries, D is a product of several dictionaries with simple structure;
multi scale dictionaries are obtained using smaller building blocks.

The closest to our approach is the problem of sparse total least squares
(STLS) [12, 13]; there, the representation error can be not only the vector
y −Dx, but also in the dictionary; so, the representation is not Dx, but
D̃x, where D̃ is a matrix near D. However, this matrix has no structure in
STLS and the error associated with an atom is not constrained. By using
cones, we naturally bound the difference between the actual and the central
atoms. We also hope that a clever radii allocation, possibly helped by an
appropriate DL algorithm, will be well suited for applications like anomaly
detection, where ideally the atoms with larger cones are used mostly for
normal signals, thus reducing their representation error, while anomalies
are represented with atoms with smaller cone radius, thus keeping large
errors. In such a situation, cone dictionaries will simply give better anomaly
detection than standard DL.

A somewhat related work [14] proposes a fuzzy approach to DL. The
atoms are not fixed, but associated with a membership function. However,
this association is used only for learning the dictionary; once D is found, it
is used for sparse representation in the standard way.

There are also dictionaries with parametric form [15], in which the atoms
are not free in Rm, but depend on a small number of parameters. A no-
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table example comes from direction of arrival (DOA) estimation; the atoms
depend on a single parameter, which takes continuous values; no DL is in-
volved and one can find the relevant atoms by discretization or enforcing
sparsity via the atomic norm [16].

Finally, from the viewpoint of nonlinearity, there are several other ap-
proaches where the dictionary itself has a nonlinear structure, but the rep-
resentation is finally linear, like in our case. Besides some of the works
enumerated above, like those implying multi layer dictionaries, we could
single out dictionaries involving or combined with neural networks [17, 18].

Anomaly detection is one of the important problems in machine learning
and there are many algorithms dedicated to it. Since in many applications
anomalies are not only different from normal samples but are also scarce,
the most appropriate methods for their identification are unsupervised. For
a general bibliography we point out to the review paper [19] or the more ap-
plication oriented surveys like [20] for financial fraud or [21] for image data.
We focus here on the use of DL in anomaly detection. While the supervised
setting is relatively straight-forward for DL (as it can be cast as a binary
classification problem, for which several solutions exist - see [22] for a re-
view), unsupervised variants have only fairly recently been proposed. They
do, however, cover a wide range of applications, such as abnormal electro-
cardiogram patterns [23, 24], abnormal network traffic [25], hyperspectral
images [26, 27], telemetry [28], graph anomalies [29]. The underlying idea of
most of the unsupervised DL approaches is that since normal samples out-
number the anomalies, they are better modeled via sparse representations;
hence, their representation errors are lower.

2. Dictionaries with cone atoms

We examine first some geometric aspects of the cone dictionaries.

2.1. How big is a cone?

To evaluate how big is a cone, we evaluate the volume of its intersection
with the unit ball, which is a hypersector of a hypersphere. In 3D, a cone
seems to occupy a tangible part of the ball, as suggested by Figure 1. Is this
still true when the number of dimensions grows?

The volume of a hypersector is [30]

vsm =
1

n
vbmIsin2 φ

(
n− 1

2
,
1

2

)
, (2)
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Figure 3: Ratio between the volume of the hypersector and the volume of the unit ball.

where

vbm =
πm/2

Γ(m2 + 1)
(3)

is the volume of the unit ball in Rm, I represents the regularized incomplete
beta function, which is evaluated with respect to the sine of the half apex
(or colatitude) angle of the cone φ (the angle between the cone axis d and
its generatrix a). Since sin(φ/2) = ρ/2, it follows that

sinφ =
ρ
√
4− ρ2

2
. (4)

Figure 3 shows the ratio vsm/vbm between the volume of the hypersector
and the volume of the unit ball (which is equal to the ratio between the cap
defined by the cone and the surface of the unit ball), as a function of ρ and
m, the number of dimensions. We see that even for radii that are large, like
ρ = 0.5, the volume of the cone is extremely small with respect to that of
the unit ball, even for moderate number of dimensions.

Linear combinations of atoms from several cones cover a larger fraction
of the space. However, the fraction is still small. For example, considering
the simple case of s orthogonal central atoms, all having cones with radius ρ,
the volume that can be covered with linear combinations of atoms from these
cones (that lie within the unit ball) is O((2ρ

√
s)m−s), which is much smaller

than the volume of the unit ball. See Appendix A for details. Even when
considering the number of combinations of s atoms from a dictionary with
n atoms, if s is small, then the volume of the points exactly representable
as linear combinations of cone atoms is still small.
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So, it is highly unlikely that, even with a trained dictionary, the repre-
sentation error is zero for all signals, which would be undesirable in general
and particularly in an anomaly detection application.

2.2. Distance between cones
It looks natural to have disjoint cones in a dictionary, for parsimony

reasons. Moreover, intersecting cone atoms make the representation problem
ill-posed.

Remark 1. Consider the worst case, that of two identical cone atoms, both
equal to C(d, ρ). Then, all vectors y ∈ Rm can be represented as a linear
combination of two atoms from C(d, ρ). Indeed, any two linearly indepen-
dent vectors from the intersection of the cone with the hyper-plane generated
by y and d can form a linear combination equal to y. If the cones are not
identical, but have an intersection, there is still a hyper-plane containing y
and two independent vectors from that intersection.

So, we must explicitly forbid cone superposition. Anyway, having dis-
tanced atoms is beneficial for the representation: a low mutual coherence
is known to improve the properties of the sparsest representation and the
good functioning of sparse representation algorithms.

We derive a formula for the minimum distance between two disjoint
cones.

Proposition 2. Let C(d1, ρ1) and C(d2, ρ2) be two disjoint cones. (We as-
sume that dT

1 d2 ≥ 0.) Then, the distance between their central atoms obeys
to

∥d1 − d2∥ > ρ1

√
1− ρ22

4
+ ρ2

√
1− ρ21

4
. (5)

Proof. The situation where the cones are tangent is illustrated in Figure
4, where the section of the plane generated by the central atoms is shown.
The half apex angles of the cones are denoted α1 and α2. The distance
between the central atoms is ∥d1 − d2∥ = ρ. We denote a the unique atom
belonging to both cones, satisfying ∥a − d1∥ = ρ1, ∥a − d2∥ = ρ2. From
the isosceles triangles whose equal sides are (d1,a), (d2,a), and (d1,d2),
respectively, we derive the relations:

sin
α1

2
=

ρ1
2
, sin

α2

2
=

ρ2
2
, sin

α1 + α2

2
=

ρ

2
.

By using

sin
α1 + α2

2
= sin

α1

2
cos

α2

2
+ cos

α1

2
sin

α2

2
it results immediately that (5) holds.
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Figure 5: Nearest atom a in cone centered in d with radius ρ, with respect to a vector r̃.

2.3. Projection on a cone

A typical problem that appears in sparse representation is to find the
nearest atom from a given vector r, typically a residual. For cone atoms,
the problem is equivalent to finding the projection of r on the cone.

Proposition 3. Given cone C(d, ρ) and a vector r, the nearest atom a ∈
C(d, ρ) from r, i.e. the solution of

min
a∈C(d,ρ)

∥a− r∥2

s.t. ∥a∥ = 1
(6)

is given by Algorithm 1.

The proof is given in [2]. Here, we only stress that the problem can be
reduced to 2D, like in Figure 5, and solved with elementary geometry in
the plane generated by d and r̃ = r/∥r∥. Note that Figure 5 is a section
of Figure 1 made by the above plane. The figure illustrates the case where
r is outside the cone; if r is inside, then the projection is trivially the
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Algorithm 1: Nearest atom: compute nearest atom in a cone from
a given vector.

Data: vector d ∈ Rm and ρ > 0 defining cone C(d, ρ)
vector r ∈ Rm

Result: atom a ∈ C(d, ρ) nearest from r

1 Normalize vector: r̃ = r/∥r∥
2 Compute p = dT r̃
3 if p < 0 then
4 Change orientation: r̃ ← −r̃
5 if |p|+ ρ2/2 ≥ 1 then
6 The vector is in the cone: a = r̃

7 else

8 Set β =
√

1
1−p2

, α = −β|p|
9 Set λ = 1− ρ2/2, µ =

√
1− λ2

10 The desired atom is a = (λ+ µα)d+ µβr̃

normalized r. We stress that Algorithm 1 uses only vector operations and
hence has complexity O(m).

3. Dictionary learning with cone atoms

The natural extension of the dictionary learning problem to cone atoms
is formulated as follows. Given N signals yℓ, ℓ = 1 : N , and assuming that
cone radii ρj , j = 1 : n, are fixed, we want the cone centers dj , j = 1 : n,
that solve the problem

min
di∈Rm,xℓ∈Rn

N∑
ℓ=1

∥∥∥∥∥yℓ −
n∑

i=1

aiℓxiℓ

∥∥∥∥∥
2

2
s.t. ∥xℓ∥0 ≤ s, ℓ = 1 : N

aiℓ ∈ C(di, ρi), i = 1 : n, ℓ = 1 : N

(7)

Note that only the central atoms are optimized; cone radii are given. With
an error objective and no constraints, radii optimization would lead to large
values that make all errors equal to zero; such a solution is irrelevant.

To solve (7), we adopt the standard iterative approach in which the
representations and the dictionary are updated successively. The Cone-
OMP algorithm proposed in [2] is used for computing the actual atoms
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and their coefficients, with fixed central atoms and radii. It will be shortly
reviewed in Section 3.1. The algorithm to update the central atoms of the
dictionary will be presented in Section 3.2.

3.1. Cone-OMP

We proposed in [2] a sparse representation algorithm for dictionaries
with cone atoms, named Cone Optimal Matching Pursuit (Cone-OMP). We
give here only a short description.

The input-output arguments are

[x,S,A] = Cone-OMP(D,y, s),

where y is the input signal, D the dictionary of central atoms and s the spar-
sity level; the algorithm computes the representation vector x, its support
S and the actual atoms stored in the matrix A ∈ Rm×s.

Like standard OMP [31], Cone-OMP is a greedy algorithm that builds
the support by adding one index at a time. To select the next atom, the
cone atom that is nearest to the current residual is found using Algorithm 1.
To find the optimal approximation for the current support, the least-squares
solution used in OMP, which is impossible for cones, since the actual atoms
are not known, is replaced by coordinate descent. All actual atoms are
considered fixed with the exception of single one, say aj . The residual

r = y −
∑

i∈S,i ̸=j

xjaj

is computed and then aj is updated as the nearest atom from r in C(dj , ρj).
This is again done with Algorithm 1. The associated optimal coefficient xj is
readily available. A few coordinate descent rounds over the whole support
are usually sufficient for providing a nearly optimal solution. Note that
this procedure can also be seen as successive projections on convex sets;
each projection (or coordinate descent step) improves the representation
error. The complexity of Cone-OMP is only a few times that of OMP.
However, unlike for OMP, batch algorithms to be used when many signals
are represented with the same dictionary are not possible, since the actual
atoms are each time different.

3.2. Central atoms update

The main difficulty in optimizing the central atoms is that they appear
only indirectly in (7). The Cone-OMP algorithm produces the actual atoms
and their coefficients. We must decide if we keep the information produced
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by Cone-OMP, namely the actual atoms and their coefficients, or we process
it immediately. Storing the sparse matrix X is usual in standard DL algo-
rithms. However, to store all actual atoms, we need s times more memory
than for the matrix D of central atoms. This may be a significant memory
demand, which we try to avoid.

We search inspiration in AK-SVD [32], which is probably the simplest
among efficient DL algorithms, so it is clearly a candidate for adaptation to
cone atoms. Denoting dj the central atom to be updated while everything
else is fixed, the error matrix without the contribution of this atom is F ,
whose column ℓ is

fℓ = yℓ −
∑
i ̸=j

aiℓxiℓ. (8)

The squared error has the expression∑
ℓ

∥fℓ − ajℓxjℓ∥2. (9)

Note that this sum involves only the signals whose representation uses an
atom from C(dj , ρj) (for the others, xjℓ = 0). The AK-SVD idea is to
minimize the error as a function of the current atom dj only, all other
variables being fixed. If the representations are optimal, then ajℓ = dj+gjℓ,
where gjℓ is a vector with ∥gjℓ∥ ≤ ρ, situated in the subspace generated by
dj and fℓ. In other words, gjℓ is the difference between the normalized
projection of fℓ on the cone (which gives the nearest actual atom from fℓ,
see section 2.3) and the cone center. After replacing ajℓ with its above
expression, the derivative of the error (9) with respect to dj is

2
∑
ℓ

x2jℓdj − 2
∑
ℓ

xjℓ(fℓ − xjℓgjℓ). (10)

Setting the derivative to zero gives the update rule

dj ←
∑
ℓ

xjℓ(fℓ − xjℓ(ajℓ − dj)), (11)

followed by normalization.

Remark 4. For insight, note that if there is a single signal, then the new
dj is the center of a cone with radius ρ that is tangent to fℓ; if fℓ was in
the cone, then dj remains unchanged; this operation is somewhat similar to
soft thresholding; the cone is moved with the minimum necessary amount
to make it optimal.
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To prove the above affirmations, we use the relation fℓ = ajℓxjℓ + ϵ,
where ϵ is the representation error. From (11), it results that dj ← xjℓdj+ϵ.
When fℓ was in the cone, then ϵ = 0. Since fℓ − ϵ was on (or inside) the
cone, now it is on the boundary (or inside) the new cone.

In standard AK-SVD, the update of the atoms is sequential. In the
cone atom context, once dj is updated with (11), this would imply not only
updating the coefficients xjℓ, but also the actual atoms ajℓ for all signals
using an atom from C(dj , ρj). This would imply a large cost.

However, we can easily adapt the Parallel AK-SVD (PAK-SVD) algo-
rithm [22], in which the update of all atoms is made in parallel. (It was
shown that this algorithm gives good results, although it usually needs more
iterations than the standard version and convergence is more erratic.) In-
deed, the sum from (11) can be computed by adding terms as they become
available. Once a signal is represented with Cone-OMP, the error (8) can be
computed for each atom involved in representation and added to a vector
that will become (11) when all signals are represented. This can be done
without any extra computation compared with PAK-SVD. An iteration of
the resulting Cone-PAK-SVD is shown as Algorithm 2; since this is the
only algorithm that we propose, we will simply name it Cone-DL. We note
that the iterations of the for loop 2 are independent, only the results need
to be summed in a common variable D̃. So, there is indeed considerable
parallelism in Cone-PAK-SVD.

Remark 5. A possible variation of the algorithm is to update only part
of the atoms in an iteration. Denote 0 < p ≤ 1 the fraction of atoms to
be updated. In each iteration of Cone-PAK-SVD, a set of ⌊pn⌋ atoms is
chosen. The only modification of Algorithm 2 is to execute the for loop 5
only for atoms that belong to the current set. Obviously, for p = 1 we obtain
Cone-PAK-SVD. For p = 1/n we would obtain an inefficient cone version of
AK-SVD.

3.3. Ensuring disjoint cones

Algorithm 2 ignores the requirement that cones must be disjoint, see
Remark 1. As a result, especially when cone radii are large, the designed
dictionary has often intersecting atoms.

A simple way to obtain disjoint cones is to correct the result of each
Cone-DL iteration such that all superposing pairs of cones are separated.
An approach in this style was used in [33] for standard DL, but with a
decorrelation technique applied on the whole dictionary with the purpose
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Algorithm 2: An iteration of Cone-PAK-SVD.

Data: signal matrix Y ∈ Rm×N

dictionary D ∈ Rm×n and vector of radii ρ ∈ Rn

(D and ρ define cones Cj(dj , ρj), j = 1 : n)
sparsity level s

Result: updated dictionary D

1 Initialize new dictionary: D̃ = 0m×N

2 for ℓ = 1 to N do
3 Compute representation: [x,S,A] = Cone-OMP(D,yℓ, s)
4 Compute residual: r = yℓ −Ax
5 for i = 1 to s do
6 Index of current atom is: j = Si
7 Residual without this atom: f = r + ajxj
8 Update sum (11): d̃j ← d̃j + xi(f − xi(ai − dj))

9 Update dictionary D ← D̃
10 Normalize columns of D

of reducing mutual coherence. Here, we target only the atoms that are too
close to each other. A technique in this vein is INK-SVD [34], where atoms
that are too close are simply pushed away from each other in the plane
generated by them. We propose to take also into account their previous
values, which are the result of the optimization process; in this way we
expect better representation error than by using an artificial or arbitrary
direction.

Let D be the dictionary at the beginning of the iteration and D̂ the
updated dictionary. For any two updated central atoms d̂1 and d̂2, we want
to ensure that the distance between them is at least

δmin = ρ+ δ0, (12)

where ρ is the distance (5) when the cones are tangent and δ0 > 0 is the
minimum desired distance between any pair of atoms of the two cones. Of
course, we assume that the cones of D satisfy (12), while those of D̂ might
not.

We propose the following algorithm. If the atoms d̂1 and d̂2 do not
satisfy (12), we move them back towards d1 and d2, respectively, until they
satisfy (12). A possibility is by bisection: we move d̂1 to the middle of the
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distance between d1 and d̂1 and move d̂2 similarly; then we continue halving
the interval that contains the solution.

Another possibility is to move d̂1 and d̂2 proportionally with the distance
ratio

λ =
∥d1 − d2∥ − δmin

∥d1 − d2∥ − ∥d̂1 − d̂2∥
.

The new atoms are obtained via

d̂1 ← (1− λ)d1 + λd̂1,

d̂2 ← (1− λ)d2 + λd̂2.

followed by normalization. Since the atoms move on a hypersphere and
not linearly, the above computation gives only an approximation and must
be repeated a few times. This successive approximation method is faster
than bisection, but can give atoms whose distance is slightly smaller than
δmin. So, since there are much more costly operations involved in the DL
algorithm, we prefer bisection.

4. Anomaly detection. Benchmarking

We will present anomaly detection results in the context of a recent
benchmark library. This section presents the benchmark and the datasets
and the next one will give the numerical results.

We use Cone-DL and other DL methods for anomaly detection in the
usual way. The representation error is the anomaly score. So, large errors
are associated with anomalies and small errors with normal signals; since
normal signals are many and more alike, DL produces dictionaries that help
their good representation. In principle, the few outliers should have worse
representations.

ADBench [1] is a benchmark for anomaly detection problems, compris-
ing a collection of 57 datasets of various types and from various domains,
including satellite imagery, financial data, medical imaginary and healthcare
tabular data, text, etc.

The benchmark also consists in 30 anomaly detection methods suited
for tabular, time series and graph data, mostly inherited from PyOD [35],
a popular anomaly detection library. Of interest to our problem are 14
unsupervised methods for tabular data (including images). Their list can
be consulted in Table C.7.

Besides the original datasets, ADBench includes methods for generating
synthetic datasets with specific anomaly types: global, local, cluster and
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dependency anomalies [1]. Local anomalies are the most similar to the nor-
mal samples, their deviation from the local normal neighbourhood being
controlled by scaling the covariance matrix of the normal samples. Global
anomalies are uniformly generated in the feature space and thus differ sig-
nificantly from normal data. Cluster anomalies, as the name suggests, imply
grouped anomalies separated from the the normal cluster(s). Dependency
anomalies differ from normal samples with respect to the features depen-
dency structure; their probability density function is obtained by removing
the dependency modeled for the normal data.

The authors of [1] conclude that none of the unsupervised methods they
test achieves good results on all the anomaly types and suggest the need for
algorithms that are specialized for a particular type of anomaly.

Global anomalies are relatively easy to find, as for most datasets several
benchmark algorithms yield perfect anomaly identification scores. In one
particular case (the cardio dataset), 6 out of the 14 unsupervised methods
detect 100% of the anomalies. Preliminary tests on four of the datasets
show that Cone-DL also identifies all of the anomalies, so we do not further
investigate this type of anomalies.

Cluster anomalies are not particularly suited for using the representation
error as an indicator of anomalies with DL. This is because, in general, at
least an atom is learned to represent the samples in the anomalies cluster,
leading to good representation for those samples and, in turn, to unsatis-
factory anomaly identification. DL (including our cone variant) could still
be used in this case, however with other criteria for distinguishing between
normal samples and anomalies.

We exclude local anomalies for a similar reason: if anomalies are too
similar to the normal signals, they are likely to share atoms and have similar
representation errors.

We therefore test our method on dependency anomalies. Figure 6 presents
a t-SNE visualization of four of the synthetic dependency datasets and il-
lustrates how normal samples and anomalies span the underlying (albeit
reduced here by t-SNE) feature space.

In generating the dependency datasets, we use the default settings in
ADBench. Specifically, the synthetic datasets are created by taking the
normal samples of each dataset and synthetically generating the anomalies
of a particular type. Large datasets are pruned to 10000 samples and small
datasets are expanded to 1000 samples by duplicating samples. As with the
standard ADBench setup, we use 70% of the signals for training and 30%
for testing. We do not test in noisy or corrupted anomalies conditions (i.e.
no irrelevant features, duplicated anomalies or annotation errors).
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Figure 6: t-SNE illustration of four dependency datasets

The only addition to the original setting is a z-score normalization of the
data that we perform prior to the train-test split.

Out of the 57 available datasets, we perform our tests on 30 datasets,
chosen as so to include several distinct types of data, with different dataset
dimensions and anomaly ratios. In order to suit the sparse representation
framework, in all tested datasets the number of features of the signals is
larger than 3. The used datasets can be found in Table C.7, sorted by
decreasing value of m (the number of features).

5. Numerical results

This section is dedicated to numerical results. First of all, we present an
algorithm variation that arised from practical considerations. Then, we will
illustrate the general convergence behavior of Cone-DL and associated meth-
ods. Finally, the anomaly detection results will be given and commented.

5.1. Radii swap

There are many ways of choosing the cone radii values and we explore two
of them in these experiments. The first choice is that of a constant radius for
all cones. The other is to generate the radii according to a random uniform
distribution in the interval [ρmin, ρmax].

In the second case, a situation can arise that small radii atoms are learned
to represent normal data, leading to insufficient coverage of the feature space
that corresponds to the normal samples. We propose a method for ensuring
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that atoms get adequate radii according to their usage. After performing
dictionary learning, we sort the atoms in descending order by the number
of signals that are represented using the atoms. We then attribute the
radii in descending order to the sorted atoms and recompute the sparse
representation.

After radii redistribution, it is possible that some cones intersect. So,
for each pair of superposing cones, we reduce proportionally their radii such
that they respect the minimum distance δ0.

The above addition to a DL algorithm will be indicated by the word
’swap’ in its name.

5.2. Convergence behavior

We illustrate here the evolution of the representation error in the Cone-
DL algorithm. Naturally, since cones are used, the error is always better
than that obtained by a standard DL algorithm like AK-SVD. A more in-
teresting comparison is with the combination of AK-SVD and Cone-OMP;
after DL with AK-SVD (which uses standard OMP), the representations are
computed with Cone-OMP. We use the same radii distribution for Cone-DL
and AK-SVD + Cone-OMP.

Both Cone-DL and AK-SVD are initialized with a dictionary D0, gener-
ated as a random matrix with normally distributed entries (zero mean and
unit variance), whose columns are normalized. The cone radii are given, ei-
ther constant or uniformly distributed, as discussed in Section 5.1. If there
are superpositions between cones, then a new D0 is generated in the same
way. If ten such attempts are unsuccessful, we multiply the radii with a fac-
tor of 0.95 and repeat the procedure. Usually, the first attempt is successful,
since we used rather small radii; the probability of superposing cones grows
with the overcompleteness factor c = n/m and decreases with m.

Figure 7 shows the evolution of the Cone-DL error (per element), aver-
aged over 10 runs with differentD0, with s = 3, c = 3, δ0 = 0.01, ρmin = 0.01
and ρmax = 0.1. The final error of AK-SVD + Cone-OMP is shown with a
horizontal line. Similarly, the errors after the final swap are shown with hor-
izontal lines. The titles of the plots are the names of the datasets. For data
with medium and large m, like those in the figure, the typical situation is
that Cone-DL reaches a better error than AK-SVD + Cone-OMP. Swapping
the radii according to atom use (see Section 5.1), usually improves AK-SVD
+ Cone-OMP, which is expectable since the initial radii allocation is random.
On the contrary, the swap usually produces worse error for Cone-DL; this
is again expectable, since Cone-DL optimizes the atoms implicitly taking
radii into account; a redistribution of the radii should not improve error if
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Figure 7: Examples of error evolution, ρmax = 0.1.

Cone-DL works well. The right bottom plot (Waveform dataset) shows that
when Cone-DL has not reached a minimum, swapping can improve error;
the same may happen if Cone-DL reaches a poor local minimum, a situation
that can arise when m is small and the overcompleteness factor c is large.

Figure 8 shows similar plots for larger radii, with ρmax = 0.2; the other
parameters are unchanged. Now, the differences between Cone-DL and AK-
SVD + Cone-OMP are neater. The situations where swapping does not
improve AK-SVD + Cone-OMP are also present; however, their occurence
is rather scarce.

Tests with artificial data, generated with an underlying sparse represen-
tation, show an even neater advantage of Cone-DL. We omit them here.

The overall empirical conclusion is that Cone-DL manages to decrease
the representation error, albeit not at each iteration, but consistently, and
reaches small values of the error (with no guarantee of a local minimum).
Its behavior is similar with that of other DL algorithms.
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Figure 8: Examples of error evolution, ρmax = 0.2.

5.3. Anomaly detection results

We give now anomaly detection results for Cone-DL and other DL meth-
ods and compare them with those of the AD methods from ADBench [1].
Besides Cone-DL, AK-SVD + Cone-OMP and their swap variants, we also
use the standard AK-SVD (with OMP as sparse representation algorithm).
In all DL methods the dictionary is learned in unsupervised manner using
the training set (whose labels are not used). The representation error is
then computed on the testing set using the trained dictionary and the ap-
propriate sparse representation method (OMP or Cone-OMP). As discussed
in Section 4, the anomaly score of the DL methods is the representation
error; larger errors are associated with anomalies.

The figure of merit is ROC AUC (Receiver Operating Characteristic
Area Under Curve). We report the results on the test set as means of 10
trials, with different randomly initialized D0 as described in Section 5.2.
We took s ∈ {2, 3} and c ∈ {2, 3, 4} (without the combination s = 3,
c = 4). The minimum distance between cones is δ0 = 0.01. The best raw
results for each method and dataset are given in Table B.6; the datasets
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s = 2 s = 3
Algorithm Radii c = 2 c = 3 c = 4 c = 2 c = 3

AK-SVD + OMP - 2.13 1.93 2.07 2.27 2.43

Cone-DL ρ = 0.05 2.03 1.87 1.93 3.23 3.13
AK-SVD + Cone-OMP 1.87 1.80 1.80 2.17 2.47

Cone-DL 2.07 1.93 1.97 4.30 3.60
AK-SVD + Cone-OMP uniform 1.97 1.87 1.83 2.50 2.53

Cone-DL + swap ρ ∈ [0.01, 0.1] 1.90 1.73 1.80 3.37 3.13
AK-SVD + Cone-OMP + swap 1.73 1.67 1.67 2.10 2.23

Table 1: Ranking of DL methods in the 14 methods from ADBench, on 30 datasets.

s = 2 s = 3
Algorithm Radii c = 2 c = 3 c = 4 c = 2 c = 3

AK-SVD + OMP - 2.08 1.92 1.83 1.75 1.75

Cone-DL ρ = 0.05 1.83 1.67 1.67 2.00 1.50
AK-SVD + Cone-OMP 1.92 1.67 1.67 1.58 1.58

Cone-DL 1.83 1.67 1.75 4.00 2.33
AK-SVD + Cone-OMP uniform 1.83 1.50 1.67 1.58 1.58

Cone-DL + swap ρ ∈ [0.01, 0.1] 1.75 1.58 1.75 3.08 2.08
AK-SVD + Cone-OMP + swap 1.67 1.58 1.75 1.50 1.50

Table 2: Ranking of DL methods in the 14 methods from ADBench, on the 12 datasets
with m > 20.

are sorted in descending order of the number of features, m. The best
performing overcompleteness and sparsity level combinations are reported
for each method. More comments are given in Appendix B. We used the
two types of radii described in Section 5.2. When the radius is constant,
we took ρ = 0.05; of course, swapping radii makes no sense in this case.
When the radii are randomly uniform distributed, we took ρmin = 0.01
and ρmax = 0.1; the radii and the initial dictionaries are the same for all
methods involving cones (separately for constant and random radii). AK-
SVD + OMP is initialized with the same dictionaries as the methods with
constant radii.

For comparison, Table C.7 shows the ROC AUC results of the 14 bench-
mark algorithms from [1] on the 30 synthetic datasets, as well as the mean
scores of each method on all selected datasets. Since there are many results,
we give below some synthetic performance indicators.

The first is the average ranking of each of our algorithms when individ-
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ually added to the 14 algorithms tested in ADBench [1]. This is done for
each pair s, c separately, such that the comparison is made for each set of
parameters. On each dataset, the 15 algorithms are ranked from 1 to 15
based on the ROC AUC performance. Then, the average rank is computed
for each algorithm; the best possible value is 1. Table 1 gives the rank av-
eraged for all 30 datasets considered. The DL methods are better than all
ADBench method whenever the average rank is less than 2.5; the rank of
the best method among the 14 from ADBench, namely LOF (although COF
has a better mean ROC AUC, see again Table C.7, LOF has better average
rank), varies from 2.6 to 2.93. So, with the exception of Cone-DL for s = 3,
the DL methods are placed first. We note also that the methods involving
cones are better than AK-SVD + OMP when s = 2, the case where the best
results are obtained.

Table 2 gives the average rank for the 12 datasets with largest number of
features (m > 20). Here, Cone-DL and AK-SVD + Cone-OMP are tied for
the best result, a ranking of 1.5. It can be seen that the best results are now
obtained for s = 3. A quick inspection of Table B.6 shows that indeed, for
large m, the best choice is usually s = 3, while for small m it is rather s = 2.
From both Tables 1 and 2 we notice that swapping improves the results. The
improvement is significant when Cone-DL has the weakest results, a possible
sign that convergence to a good minimum is not achieved; otherwise, it is
marginal. Note however that there is no direct correlation between error
and anomaly detection performance, although low error is usually desirable.
The second best method is again LOF, whose rank is between 2.33 and 2.75;
the gap between DL methods and LOF is usually significant.

s = 2 s = 3
Algorithm Radii c = 2 c = 3 c = 4 c = 2 c = 3

AK-SVD + OMP - 0.9326 0.9329 0.9328 0.9264 0.9196

Cone-DL ρ = 0.05 0.9347 0.9370 0.9365 0.9023 0.8963
AK-SVD + Cone-OMP 0.9390 0.9395 0.9389 0.9270 0.9182

Cone-DL 0.9332 0.9346 0.9331 0.8868 0.8870
AK-SVD + Cone-OMP uniform 0.9375 0.9367 0.9369 0.9212 0.9146

Cone-DL + swap ρ ∈ [0.01, 0.1] 0.9370 0.9400 0.9396 0.9030 0.9006
AK-SVD + Cone-OMP + swap 0.9425 0.9427 0.9443 0.9287 0.9229

Table 3: ROC AUC of DL methods, averaged on 30 datasets.

Tables 3 and 4 show the average ROC AUC values on all 30 and 12 with
largest m, respectively. The values confirm the ranking results. First of all,
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s = 2 s = 3
Algorithm Radii c = 2 c = 3 c = 4 c = 2 c = 3

AK-SVD + OMP - 0.9867 0.9875 0.9874 0.9883 0.9886

Cone-DL ρ = 0.05 0.9881 0.9890 0.9888 0.9877 0.9900
AK-SVD + Cone-OMP 0.9883 0.9890 0.9889 0.9897 0.9901

Cone-DL 0.9878 0.9893 0.9891 0.9740 0.9891
AK-SVD + Cone-OMP uniform 0.9877 0.9887 0.9889 0.9892 0.9902

Cone-DL + swap ρ ∈ [0.01, 0.1] 0.9889 0.9898 0.9898 0.9825 0.9887
AK-SVD + Cone-OMP + swap 0.9891 0.9897 0.9900 0.9904 0.9908

Table 4: ROC AUC of DL methods, averaged on the 12 datasets with m > 20.
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Figure 9: Average rank for the algorithms with constant (left) and random (right) radius,
with s = 2, c = 3. Horizontal axis: number of datasets on which the rank is computed;
the datasets are sorted in order of decreasing m.

we note that indeed most of them are cleary larger than the average ROC
AUC of COF (0.9274) or LOF (0.9256), the best of the 14 methods from
ADBench. Also, we see that the cone methods are better than standard
AK-SVD in most cases, although the differences are not very large.

A more general view on the ranking is given by Figure 9. For each
k = 1 : 30, we compute the average rank of the DL methods on the first k
datasets (sorted by decreasingm); we show results only for s = 2, c = 3. The
figure also contains the ranks of LOF and COF, the best competitors from
ADBench. With the notable exception of SpamBase, DL methods tend to
be better than LOF and COF, especially for large m. The plot also confirms
the advantage of cone methods over standard AK-SVD.

Table 5 gives the average execution times of the basic DL methods, for
the 30 datasets, for training and testing. The MATLAB implementation
was run on a Lenovo computer with Intel i7 processor and 32 GB of RAM.
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s = 2 s = 3
Algorithm c = 2 c = 3 c = 4 c = 2 c = 3

AK-SVD + OMP 59.45 76.84 89.70 70.16 92.84

Cone-DL 156.66 166.18 167.16 310.78 314.34

Table 5: Average execution time of DL methods over the 30 datasets.

AK-SVD + Cone-OMP is only slightly slower than AK-SVD + OMP. Simi-
larly, swapping radii adds only negligible extra time. As expected, Cone-DL
is clearly slower than AK-SVD. Much of the AK-SVD advantage comes from
the efficient batch OMP implementation from [32], while Cone-OMP com-
putes the representations one by one; the lower efficiency of Cone-OMP is
especially visible from the difference of the computation times for s = 2
and s = 3. Also, we use a precompiled OMP. For comparison, COF algo-
rithm runs in 62.65 seconds on all datasets, while LOF in 3.75 seconds. Our
programs and the datasets can be found at http://asydil.upb.ro.

6. Conclusion

We have presented algorithms for sparse representation and dictionary
learning with cone atoms. This dictionary structure offers more versatility in
representation and favors the signals that are more alike over those that are
different from the rest. So, anomaly detection is a natural application. We
have shown that for dependency anomalies, our cone methods are clearly
better than those from a popular benchmark. They are also better than
standard DL. Although it gives smaller representation errors, the proposed
Cone-DL algorithm is slightly inferior in anomaly detection, compared with
the simpler variant of using standard DL for training but Cone-OMP for
representation. Further work will be dedicated to narrowing down the situ-
ations where Cone-DL can be improved, especially by a more adequate radii
allocation.
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Appendix A. The volume of linear combinations of s cones

We consider the simplifying case of cones with equal radii and orthogonal
central atoms. Let di, i = 1 : s, be orthogonal vectors with unit norm.
Without loss of generality, we can assume that di is the unit vector of index
i. Consider linear combinations

y =
s∑

i=1

αiai, (A.1)

with ai ∈ C(di, ρ). Since we are interested in the volume occupied by vectors
y in the unit hypersphere, we have ∥y∥ ≤ 1. It is obvious that the first s
elements of y can have all values that are possible in the unit hypersphere.
So, we focus on the last m− s elements.

We can write
ai = βidi + γivi,

with vi ⊥ di, ∥vi∥ = 1 and β2
i + γ2i = 1. Since

∥ai−di∥ ≤ ρ⇒ ∥(βi−1)di+γivi∥2 ≤ ρ2 ⇒ (βi−1)2+γ2i ≤ ρ2 ⇒ βi ≥ 1−ρ2/2

it follows that

|γi| =
√

1− β2
i ≤ ρ

√
1− ρ2/4.

The component of (A.1) that lies in the space formed by the last m − s
dimensions of Rm is at most

ν =

s∑
i=1

αiγivi.

For small ρ, the vectors ai are nearly orthogonal, so we have

s∑
i=1

α2
i ≤ µ⇒

s∑
i=1

|α|i ≤
√
µs,

where µ is a constant (depending on ρ) not much larger than 1. It results
that each element k ∈ s+ 1 : m of ν satisfies

|νk| ≤
s∑

i=1

|αiγi| ≤
√
µs · ρ

√
1− ρ2/4 ≤ ρ

√
µs. (A.2)

Finally, the volume of the vectors (A.1) is less than

vbs(2ρ
√
µs)m−s, (A.3)
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where vbs is the volume of the unit ball in Rs. This is in fact the volume
of the hypercylinder having as ”basis” the unit ball in Rs (accounting for
the first s elements of y) and as ”height” the other m − s elements, each
bounded by (A.2). The part of the hypersphere in which y lies is inside this
hypercylinder.

It is clear that the volume (A.3) is much smaller than the volume of the
unit hypersphere in Rm whenever s and ρ are small, which is the practical
case when using sparse representations with cone atoms.

Appendix B. Detailed DL dependency results

Table B.6 presents the best ROC AUC result of each DL method. The
first two columns are the name of the dataset and the number of features,
m. A group of three columns is associated with each method and radii
distribution: the values of the overcompleteness factor c and sparsity level
s for which the best ROC AUC value is obtained and the ROC AUC value
itself. Here are a few comments on the brute results.

Out of the two parameters c and s, the algorithms are more robust
with respect to sparsity: in 83% of the datasets all constant radii cone
methods yield best results for the same sparsity level (s = 2), while in the
case of randomly uniform radii algorithms the percentage is 60%. With
overcompleteness, consensus is reached beetween methods in 50% of the
datasets regardless of the type of radii used.

Radii swapping doesn’t affect greatly the best performing parameters:
Cone-DL and its reordered radii variant show the best results with the same
sparsity level in all but two datasets and with the same overcompleteness in
77% of the times.

Appendix C. ADBench dependency results

Table C.7 gives the ROC AUC values for the 14 methods from ADBench
[1]. They have been obtained by running the corresponding PyOD functions,
according to the ADBench methodology, with default PyOD paramaters for
the algorithms (when applicable). Nondeterministic methods are ran once.
The dependency datasets have been generated as described in Section 4,
again using the ADBench framework.

The results show that there are significant differences between the meth-
ods, confirming the comments from [1], where the results are only synthet-
ically presented. Some of the methods, like COF, LOF, KNN and SOD

28



Table B.6: DL ROC AUC results on dependency datasets

Dataset m
AK-SVD +

OMP

Radii ρ = 0.05 Radii uniform ρ ∈ [0.01, 0.1]

Cone-DL
AK-SVD +
Cone-OMP

Cone-DL
AK-SVD +
Cone-OMP

Cone-DL +
swap

AK-SVD +
Cone-OMP +

swap
c s ROC AUC c s ROC AUC c s ROC AUC c s ROC AUC c s ROC AUC c s ROC AUC c s ROC AUC

musk 166 3 3 0.9994 3 3 0.9994 3 3 0.9997 3 2 0.9995 3 3 0.9996 3 2 0.9995 3 3 0.9997
SpamBase 57 3 3 0.8955 3 3 0.9040 3 3 0.9042 3 3 0.9095 3 3 0.9043 3 3 0.9093 3 3 0.9092
landsat 36 4 2 0.9998 4 2 0.9998 4 2 0.9999 3 2 0.9997 3 3 0.9999 3 2 0.9997 3 3 0.9999
satellite 36 3 3 0.9999 3 2 1 3 3 1 2 2 1 4 2 1 2 2 1 4 2 1
Satimage-2 36 2 3 1 3 3 1 2 3 1 3 3 1 3 3 1 3 3 1 3 3 1
WPBC 33 4 2 0.9966 4 2 0.9972 4 2 0.9970 3 3 0.9976 4 2 0.9976 3 3 0.9979 2 3 0.9980
ionosphere 33 3 3 0.9909 3 3 0.9931 3 3 0.9930 3 3 0.9925 3 3 0.9927 3 2 0.9929 3 3 0.9939
letter 32 3 3 0.9996 3 3 0.9997 3 3 0.9997 3 3 0.9998 3 3 0.9996 3 3 0.9997 3 3 0.9996
WDBC 30 3 3 1 3 2 1 2 3 1 2 3 1 2 2 1 2 3 1 2 2 1
fault 27 2 3 0.9959 3 3 0.9960 2 3 0.9962 4 2 0.9965 2 2 0.9965 3 2 0.9970 2 2 0.9971
cardio 21 2 3 0.9888 3 3 0.9920 2 3 0.9942 3 2 0.9898 3 3 0.9946 3 2 0.9897 3 3 0.9943
Waveform 21 3 3 0.9999 4 2 0.9997 3 3 0.9999 3 2 0.9998 3 3 1 3 2 0.9998 3 3 1
Hepatitis 19 2 3 0.9096 3 3 0.9143 2 3 0.9231 3 3 0.9245 2 3 0.9247 2 2 0.9219 2 2 0.9247
Lymphography 18 4 2 0.9682 4 2 0.9683 4 2 0.9753 3 3 0.9730 3 3 0.9820 3 3 0.9710 3 3 0.9794
pendigits 16 4 2 0.9993 4 2 0.9995 4 2 0.9995 4 2 0.9994 3 2 0.9993 4 2 0.9992 4 2 0.9992
wine 13 2 3 0.9866 2 3 0.9888 3 3 0.9911 4 2 0.9879 4 2 0.9898 4 2 0.9890 3 3 0.9912
vowels 12 2 3 0.9959 3 2 0.9967 2 3 0.9985 4 2 0.9954 2 3 0.9983 2 2 0.9955 2 3 0.9979
cover 10 3 3 0.9967 4 2 0.9975 3 2 0.9976 4 2 0.9978 4 2 0.9978 4 2 0.9969 4 2 0.9971
magic.gamma 10 2 3 0.9623 4 2 0.9608 2 3 0.9716 2 2 0.9610 2 3 0.9670 4 2 0.9671 4 2 0.9741
breastw 9 3 2 0.8255 3 2 0.8324 3 2 0.8338 4 2 0.8432 4 2 0.8430 4 2 0.8549 4 2 0.8600
Stamps 9 4 2 0.8985 4 2 0.8987 4 2 0.9077 4 2 0.8878 4 2 0.8957 4 2 0.9011 4 2 0.9136
WBC 9 3 3 0.9013 4 2 0.9194 4 2 0.9223 3 2 0.9022 2 3 0.9160 4 2 0.9032 4 2 0.9136
Pima 8 2 2 0.8308 2 2 0.8440 2 2 0.8614 2 2 0.8468 4 2 0.8614 4 2 0.8649 4 2 0.8841
yeast 8 2 2 0.9291 2 2 0.9302 2 2 0.9362 4 2 0.9127 2 2 0.9309 4 2 0.9280 4 2 0.9457
glass 7 3 2 0.8738 4 2 0.8921 3 2 0.8853 4 2 0.8658 2 2 0.8743 4 2 0.8767 4 2 0.8757
annthyroid 6 4 2 0.8765 3 2 0.8783 2 2 0.8869 2 2 0.8770 3 2 0.8810 3 2 0.8813 4 2 0.8907
mammography 6 4 2 0.8687 4 2 0.8680 4 2 0.8797 3 2 0.8609 3 2 0.8692 3 2 0.8693 3 2 0.8758
thyroid 6 2 2 0.8763 3 2 0.8798 2 2 0.8894 3 2 0.8815 2 2 0.8985 3 2 0.8850 2 2 0.9024
vertebral 6 2 2 0.8688 2 2 0.8720 3 2 0.8783 2 2 0.8645 2 2 0.8660 2 2 0.8852 2 2 0.8948
Wilt 5 2 2 0.6922 4 2 0.6722 2 2 0.7035 3 2 0.6736 2 2 0.6905 3 2 0.6895 2 2 0.7129
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Table C.7: ADBench ROC AUC results on dependency datasets

Dataset IForest OCSVM CBLOF COF COPOD ECOD HBOS KNN LODA LOF PCA SOD DeepSVDD DAGMM
musk 0.9518 0.9614 0.9709 0.9925 0.6444 0.6084 0.6508 0.9982 0.7639 0.9994 0.6514 0.9976 0.8402 0.6616
SpamBase 0.7260 0.7855 0.8590 0.9618 0.6022 0.5306 0.6628 0.8900 0.5054 0.9645 0.7558 0.9190 0.6125 0.6296
landsat 0.9276 0.9897 0.9753 0.9988 0.6589 0.6512 0.6328 0.9985 0.7734 0.9952 0.6832 0.9955 0.6707 0.7337
satellite 0.9395 0.9784 0.9852 0.9982 0.5885 0.5731 0.6253 0.9999 0.7206 0.9977 0.5435 0.9969 0.5059 0.6813
Satimage-2 0.9783 0.9912 0.9883 0.9957 0.5675 0.5480 0.6267 0.9991 0.7938 0.9994 0.5370 0.9981 0.9275 0.6552
WPBC 0.8440 0.9005 0.9251 0.9969 0.6131 0.5522 0.5646 0.9927 0.6712 0.9994 0.6146 0.9803 0.8018 0.5157
Ionosphere 0.8580 0.8803 0.9479 0.9951 0.6856 0.6748 0.6450 0.9912 0.7055 0.9951 0.7284 0.9826 0.7081 0.4513
letter 0.9220 0.9716 0.9696 0.9936 0.6801 0.6751 0.6471 0.9933 0.7652 0.9973 0.7008 0.9935 0.8974 0.5327
WDBC 0.9452 0.9786 0.9726 0.9991 0.7539 0.7350 0.6931 0.9966 0.9225 0.9983 0.8476 0.9949 0.9799 0.8399
fault 0.9627 0.9797 0.9856 0.9912 0.8876 0.8943 0.8577 0.9948 0.8944 0.9525 0.9232 0.9812 0.5222 0.7300
cardio 0.8255 0.8615 0.9287 0.9543 0.6305 0.6227 0.6173 0.9579 0.6909 0.9915 0.6537 0.9471 0.7194 0.6444
Waveform 0.8617 0.9251 0.9484 0.9895 0.6505 0.6562 0.6342 0.9921 0.7319 0.9982 0.6613 0.9856 0.7513 0.7652
Hepatitis 0.7048 0.7276 0.8034 0.8383 0.5589 0.5564 0.5475 0.8332 0.5496 0.9194 0.5796 0.8424 0.3691 0.4884
Lymphography 0.8100 0.8309 0.8789 0.8419 0.5607 0.5419 0.4792 0.8901 0.5835 0.8783 0.6065 0.8901 0.5937 0.5127
pendigits 0.9385 0.9466 0.9579 0.9808 0.6457 0.6407 0.5188 0.9964 0.7744 0.9949 0.6229 0.9925 0.7406 0.6542
wine 0.8029 0.8379 0.8532 0.9746 0.5950 0.5939 0.5713 0.9173 0.6806 0.9637 0.6046 0.9520 0.6898 0.4343
vowels 0.8009 0.8543 0.9030 0.9387 0.5532 0.5872 0.5777 0.9370 0.6796 0.9622 0.5888 0.9186 0.7667 0.7065
cover 0.8341 0.8331 0.8639 0.9707 0.5227 0.5247 0.5685 0.9929 0.5694 0.9916 0.5464 0.9958 0.7605 0.5354
magic.gamma 0.7431 0.7578 0.8240 0.9346 0.5783 0.5803 0.5368 0.9725 0.6131 0.8632 0.6127 0.9403 0.3926 0.3555
breastw 0.6960 0.6863 0.7413 0.8378 0.6206 0.6172 0.5994 0.8006 0.5833 0.8129 0.6303 0.8043 0.4059 0.5128
Stamps 0.7304 0.7582 0.8118 0.9068 0.6334 0.6386 0.6227 0.8335 0.7023 0.8858 0.6786 0.8832 0.6001 0.4534
WBC 0.6490 0.6307 0.6848 0.8438 0.5083 0.5007 0.4983 0.7610 0.4455 0.8534 0.4886 0.7838 0.3728 0.4669
Pima 0.5728 0.5757 0.6714 0.8505 0.4682 0.4444 0.4659 0.7755 0.4916 0.8214 0.4654 0.7933 0.4720 0.4555
yeast 0.8112 0.7932 0.8629 0.8702 0.6916 0.6998 0.6688 0.9146 0.6430 0.6681 0.7168 0.8797 0.4117 0.3731
glass 0.6457 0.6752 0.7290 0.8185 0.4902 0.5334 0.4514 0.7711 0.5366 0.8507 0.5789 0.7593 0.5433 0.5637
annthyroid 0.6980 0.7181 0.7806 0.9336 0.5982 0.5875 0.5475 0.8909 0.6028 0.9368 0.6206 0.8882 0.4824 0.5441
mammography 0.7771 0.7338 0.8058 0.9272 0.5565 0.5466 0.5323 0.9460 0.5388 0.9525 0.5619 0.9615 0.6428 0.4858
thyroid 0.6605 0.7000 0.7366 0.8843 0.5706 0.5948 0.5639 0.8396 0.5581 0.9144 0.6255 0.8248 0.4385 0.5070
vertebral 0.7421 0.7653 0.8002 0.8795 0.5672 0.5996 0.5796 0.8588 0.6270 0.8611 0.5932 0.8177 0.4288 0.4473
Wilt 0.5671 0.5912 0.6172 0.7242 0.5257 0.5396 0.5214 0.7266 0.5091 0.7479 0.5502 0.6690 0.4390 0.4826
Mean 0.7976 0.8206 0.8594 0.9274 0.6069 0.6016 0.5903 0.9154 0.6542 0.9256 0.6324 0.9123 0.6162 0.5607

behave very well, while many of the others have rather poor results. The re-
sults are consistent with those from [1, Fig.5c], where the same four methods
occupy the first four positions (on 57 datasets, without details on individual
datasets results).

As in the case of the DL algorithms, the ADBench results depend on
the signal dimension m, in the sense that better detection is obtained, in
general, for the datasets with larger m.
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