
ONLINE COMPUTATION OF REDUCED EGONET FEATURES FOR ANOMALY
DETECTION IN BANK TRANSACTIONS GRAPHS

Cristian-Enache Zica, Bogdan Dumitrescu

University Politehnica of Bucharest
Department of Automatic Control and Computers

313 Spl. Independenţei, 060042 Bucharest, Romania

ABSTRACT

Anomaly detection in bank transactions graphs can be an ef-
fective tool for revealing potentially fraudulent activities. On-
line algorithms are the most interesting in this context, since
they can lead to early analysis of dubious transactions. We
propose an online algorithm for computing vertex features re-
lated to egonet and reduced egonet. Such features have been
proved effective for anomaly detection in bank transactions
graphs, but in a batch approach. The proposed online algo-
rithm needs to explore only sets of common neighbors of two
vertices, without isolating the egonet as a subgraph. Hence,
it is very efficient and has execution times suited for practi-
cal use. Also, the performance in detecting anomalies is quite
similar to that of an a posteriori algorithm that computes the
features and the anomaly scores only at the end of each day.

Index Terms— Graphs, egonet, anomaly detection, bank
transactions, online algorithm

1. INTRODUCTION

Fraudulent activities like money laundering can seriously hin-
der the economic system of a country or region. Their early
detection with machine learning tools is beneficial for the san-
ity of the system. Our focus here is on the problem of finding
money laundering in bank transactions, which are still used
extensively by some individuals and firms for this purpose.

Bank transactions can be naturally modeled with a di-
rected graph G = (V, E). A vertex v ∈ V is a bank account,
or a group of accounts belonging to the same person or entity.
An edge e = (v1, v2) ∈ E represents money transfers from v1
to v2. We associate two attributes with the edge: the cumu-
lated amount of the transfers (converted to the same currency)
and the number of transactions over a given time window. So,
the graph is simple: there is at most one edge from one vertex
to another; the reverse edge may exist or not.

This work was supported by a grant of the Ministry of Research, Innova-
tion and Digitization, CNCS - UEFISCDI, project number PN-III-P4-PCE-
2021-0154, within PNCDI III.

Detecting abnormal vertices in such a graph, with graph
anomaly detectors, can seriously narrow the group of fraud
suspects. In this paper, we present an online version of a
method with good results [1].

Previous work. The inspiration for some of the existing
methods is in the detection of structures near those specific to
money laundering, among which most prominent are cliques,
stars and rings, but also more complicated structures like tri-
partite graphs [2]. Other methods use a statistical approach,
identifying the extreme points in the distribution of some fea-
tures, related to egonets [3], local connectivity [4], or several
categories [5, 6]. The reduced egonet is used in [1] as a struc-
ture that can provide relevant features, fed to an anomaly de-
tector. There are also many learning approaches for anomaly
detection in graphs: node2vec [7] (automated features extrac-
tion), Netwalk [8], auto-encoders [9, 10, 11] (the first with
application to financial fraud detection). More references can
be found in the review articles [12, 13, 14], the latter on meth-
ods using deep learning.

Contribution and contents. We have two main purposes.
The first and main goal is to design and implement an ef-
ficient online algorithm for exactly computing the reduced
egonet features without computing egonets. The features are
reviewed in Section 2. The algorithm is derived and described
in Section 3. The second is to check whether the online algo-
rithm has similar anomaly detection performance as the batch
a posteriori algorithm, in a scenario that will be detailed later
in Section 4. In the same section, we present experimental
evidence on the speed-up of our online algorithm and on its
detection performance.

2. REDUCED EGONET FEATURES

We review here some relevant features related to the egonet
structure. The egonet E(v) of (central) vertex v is the sub-
graph of G whose vertices are v and its immediate neighbors,
regardless of the directions of the edges between them.

The reduced egonet (egored) [1] Ê(v) is the subgraph of
E(v) that is obtained after removing all vertices that have a
single edge (in or out). Figure 1 shows five simple egonets,



·

·

·

· ·

·

·

·

· ·

·

· ·

Fig. 1. Simple egonets and their egoreds. The bottom node is
the center. Egoreds are made of the filled vertices.

·

·
·

·

··

·

·

Fig. 2. An egonet. Its egored is the subgraph having the filled
circles as vertices.

whose central vertex is the bottom one; the corresponding
egoreds are the subgraphs having the filled circles as vertices;
from left to right, the number of vertices in the egoreds are:
0, 1, 2, 2, 3. Another egonet is shown in Figure 2; it has
eight vertices; its egored has five vertices and is a near-clique,
which is a structure that may indicate a suspect behavior.

2.1. Basic features

The approach in [1] uses the following eight basic features of
a vertex:

• in/out (I/O) degrees, denoted di and do

• I/O total amounts, ai and ao

• I/O number of transactions, ti and to

• number of vertices in the egonet, nv

• number of edges in the egonet (viewed as an undirected
graph), ne

For example, the vertex whose egonet is shown in Figure 2
has the indegree di = 5 and the outdegree do = 3; the number
of vertices in the egonet is nv = 8 and the number of edges
is ne = 12. The input total amount is the sum of all transfers
to the central vertex from its neighbors; the input number of
transactions is simply the number of such transfer operations.
The output features are defined similarly.

The same basic features as above can be computed for the
egored. We use the same notation as for the egonet, but with
a hat. In Figure 2, considering now the egored, the central
vertex has the indegree d̂i = 3 and the outdegree d̂o = 2; the
number of vertices in the egored is n̂v = 5 and the number of
edges is n̂e = 9. Since the egored is a subgraph of the egonet,
the total amounts and the number of transactions are smaller:
âi ≤ ai, t̂i ≤ ti, etc. When the vertex whose features are
referred to is not clear, we use the notation, e.g., di(v).

2.2. Features for anomaly detection

Anomaly detection was performed in [1] using features se-
lected or derived from the basic ones. For the sake of com-
pleteness, we enumerate the features that proved the most suc-
cessful for detecting anomalies in real and synthetic graphs.

There are seven egonet features:

• I/O degree, di and do

• I/O total amounts

• I/O average amount, ai/ti and ao/to, total amount of
money I/O divided by the number of I/O transactions

• egonet edge density, ne/nv , the ratio between the num-
ber of edges of the egonet and the number of its nodes.

The reduced egonet features are (also seven):

• I/O relative degree, d̂i/di and d̂o/do, the ratios between
degrees in the egored and degrees

• I/O relative total amount, âi/ai and âo/ao, the ratios
between the I/O total amount in the egored and the I/O
total amount

• I/O average amount, âi/t̂i and âo/t̂o

• egored edge density, n̂e/n̂v .

For all features that are a ratio, the value is set at zero if the
denominator is zero. The computation of the above features
is direct and very simple when the basic features are avail-
able. So, our focus in the next section will be on the online
computation of the basic features.

3. ONLINE FEATURE UPDATE

We assume that we are in possession of a graph G and the ba-
sic features described in section 2.1 are available for all ver-
tices. A new transaction appears, from v1 to v2, with amount
a. Our problem is to update the basic features such that the
new transactions is considered. In other words, we want to
design an online algorithm for basic features update.

The inefficient algorithm is obvious. We simply recom-
pute the egonets and egoreds of all vertices affected by the
new transaction and extract their basic features. This algo-
rithm may be good for vertices with low connectivity, but be-
comes slow for highly connected vertices. Since in an online
algorithm we want a small execution time not only in average,
but also in the worst case, this solution is not acceptable.

Let C(u,w) be the set of common neighbors (no mat-
ter the directions of the edges) of the vertices u and w. We
will describe an algorithm for basic feature update that com-
putes only sets of common neighbors. No subgraphs, like the
egonet or the egored, are necessary. Since a formal descrip-
tion of the algorithm would take too much space (and it can



be derived from the sources that we provide), we present here
the main situations that appear and their treatment, with more
or less details. In all considerations, the graph G is that before
the arrival of the new transactions.

3.1. Simple cases

We discuss first the cases whose solution is immediate.
If the edge (v1, v2) already exists, so this is not the first

transactions between the two vertices, then the egonets E(v1)
and E(v2) are unchanged. Only the amounts and number of
transactions must be modified via

ao(v1) += a, ai(v2) += a,
++to(v1), ++ti(v2).

(1)

To shorten the relations, we use the standard C operators ++
to increase the value by 1 and += to add the right hand value
to the left hand variable.

Next, we have to examine whether v1 ∈ Ê(v2) and v2 ∈
Ê(v1). Note that both events are either true or false: the rela-
tionship is reciprocal; if v1 is in the egored of v2, then neces-
sarily v2 is in the egored of v1. The condition for v1 and v2 to
be in each other’s egored is

C(v1, v2) ̸= ∅ or (v2, v1) ∈ E . (2)

So, either v1 and v2 have a common neighbor or the inverse
edge exists. (These situations are essentially those in the
rightmost and middle graphs in Figure 1, respectively.) If (2)
holds, then updates similar to those in (1) are applied for the
egored amounts and number of transactions:

âo(v1) += a, âi(v2) += a,
++t̂o(v1), ++t̂i(v2).

If the edge (v1, v2) is new, then a simple situation is that
when one or both vertices are new. The egored of the new
vertex is empty (see leftmost case in Figure 1) and the egored
of the existing vertex stays in general unchanged. For ex-
ample, if v1 exists but not v2, then Ê(v1) is unchanged un-
less v1 had a single neighbor, in which case v1 enters its own
egonet, formerly empty (see, e.g., second graph in Figure 1;
compare with second rightmost, where the egored is not mod-
ified). Also, E(v1) suffers trivial modifications:

++do(v1), ++nv(v1), ++ne(v1).

The case where v2 exists but not v1 is similar. The case where
both v1 and v2 are new is trivial; the basic features of a new
node should be obvious.

3.2. New edge between existing vertices

The interesting case is that of a new edge between existing
vertices, because in this case the egonet always changes and
the egored may or may not change. Moreover, changes in the

(v2, v1) ̸∈ E (v2, v1) ∈ E

C(v1, v2) = ∅ A B

v1 v2 v1 v2

C(v1, v2) ̸= ∅ C D

v1 v2

v3

v1 v2

v3

Table 1. Elementary cases; the new edge is dashed.

egonets and egoreds of other vertices may appear. In all cases,
amounts and number of transactions are modified as in (1).

Relation (2) suggests which are the main conditions that
can be used to explore the possible cases. Table 1 illustrate the
four elementary cases, denoted A, B, C, D; the conditions for
their definition are: i) whether the inverse edge (v2, v1) exists
(B, D) or not (A, C); ii) whether v1 and v2 have common
neighbors (C, D) or not (A, B).

We discuss first the direct effect of the edge (v1, v2) on
the basic features of v1 and v2. After that, we will see the
effects on the common neighbors of these vertices.

Egonet direct changes. Since the edge is new, the (egonet)
degrees always grow:

++do(v1), ++di(v2). (3)

Also, in cases A and C, the edge (v1, v2) adds a vertex and a
connection to each egonet E(v1), E(v2):

++nv(v1), ++nv(v2),
++ne(v1), ++ne(v2).

(4)

Egored direct changes. In case A, the egoreds do not
change. The new edge is the only path from v1 to v2.

In cases B, C, D, the degrees grow, similarly to (3):

++d̂o(v1), ++d̂i(v2). (5)

Furthermore, in cases B, C, each vertex enters the egonet
of the other and so, similarly to (4), we update

++n̂v(v1), ++n̂v(v2),
++n̂e(v1), ++n̂e(v2).

(6)

Finally, in case B, the inverse edge (v2, v1) contributes
now to the egored

âi(v1) += a(v2, v1), âo(v2) += a(v2, v1),
t̂i(v1) += t(v2, v1), t̂o(v2) += t(v2, v1),

(7)



where a(v2, v1) is the amount transferred from v2 to v1 and
t(v2, v1) is the corresponding number of transactions; this in-
formation can be retrieved from G.

Indirect changes. We go now to changes caused to ver-
tices that are common neighbors of v1 and v2, which may
have also side effects on v1 and v2. We describe below the
updates for an arbitrary v3 ∈ C(v1, v2). For illustration, we
use the directions of the edges from Figure 1, i.e., (v1, v3)
and (v3, v2); a complete algorithm would take into account
all possible directions.

We note that in case D, v1 and v2 were already in Ê(v3).
So, only case C is furthermore concerned. Each of v1, v2, v3
joins the egonets and egoreds of the two other vertices, if not
already there. First of all, each egonet and egored receives
a new edge: (v1, v2) joins E(v3) and Ê(v3); (v1, v3) joins
E(v2) and Ê(v2); (v3, v2) joins E(v1) and Ê(v1). The cor-
responding updates are

++ne(v1), ++ne(v2), ++ne(v3)
++n̂e(v1), ++n̂e(v2), ++n̂e(v3).

(8)

The condition that v1 and v3 join the egoreds of each
other is that C(v1, v3) = ∅ (no common neighbors exist) and
(v3, v1) ̸∈ E ; otherwise said, v2 becomes their first common
neighbor. If so, the effects are

++n̂v(v1), ++n̂v(v3),
++n̂e(v1), ++n̂e(v3).

(9)

Moreover, under the same condition, the edge (v1, v3) is new
to Ê(v1) and Ê(v3), which produces the updates (see (7))

++d̂o(v1), ++d̂i(v3),
âo(v1) += a(v1, v3), âi(v3) += a(v1, v3),
t̂o(v1) += t(v1, v3), t̂i(v3) += t(v1, v3).

(10)

The pair v2, v3 is treated similarly.
Finally, we note that the inverse operation, that of down-

dating, which is necessary when a transaction is removed, can
be easily implemented by following the same cases as above.

3.3. Complexity

The operations described in section 3.2 are gathered in Algo-
rithm 1. We can safely evaluate the worst case complexity
only for the case of a new edge between existing nodes. Steps
1–6 contain a constant number of operations. However, we
need to compute C(v1, v2), which has at most min(di(v1) +
do(v1), di(v2) + do(v2)) vertices. So, the operations per-
formed for each v3 in the loop 7–11 add up to a complexity
that is at most linear in the degree of the node. Note that the
evaluation of the conditions C(v1, v3) = ∅ and C(v2, v3) = ∅
is less demanding than computing the set of common neigh-
bors; once a common neighbor is found, the search is finished.

By comparison, the full recomputation of the basic fea-
tures for v1, v2 and all v3 ∈ C(v1, v2) also needs the explo-
ration of all neighbors of v1, v2 and v3, but it adds another

Algorithm 1: Online egored basic features update
for a new edge between existing nodes.

Data: graph G and associated basic features
vertices v1, v2, amount a

Result: updated basic features

1 Update amount and numbers of transactions with (1)
2 Update degrees with (3)
3 Case A. Update egonet number of vertices and edges:

(4)
4 Case B. Update egored degrees: (5); update egored

number of vertices and edges: (6); add contribution
of inverse edge: (7)

5 Case C. Do (4); (5); (6)
6 Case D. Do (5)
7 for all v3 ∈ C(v1, v2), only in case C do
8 Update numbers of edges with (8)
9 if C(v1, v3) = ∅ and (v1, v3) ̸∈ E then

10 Update number of vertices and edges: (9);
add contribution of (v1, v3): (10)

11 Same as in steps 9–10 for (v3, v2)

level of complexity. All edges of the egonets and egoreds
have to be explored and hence the number of operations may
be quadratic in the degree, in the worst case. Also, the to-
tal amounts and numbers of transactions need to be computed
from scratch, while in (1) a single addition is necessary.

4. EXPERIMENTAL RESULTS

We have implemented our algorithm in Python. The sources
can be found at http://asydil.upb.ro/software.
The tests were performed on a Macbook M1 Pro computer
with an 8 core processor running at 2.06 - 3.22 GHz and 16
GB unified memory.

The dataset is a preprocessed and anonymized four-month
long list of financial transactions between accounts provided
by Libra Internet Bank from Romania. In order to enable
online-like behavior, the four-month data were grouped in two
parts: first part comprises the historical data1 (three months)
and second part contains the fourth month split into days.
Thus, each day can be processed as an increment to the ex-
isting data. The historical dataset has 4558805 transactions
and the incremental dataset has 1613005 transactions. The
graph corresponding to the first three months has 385100 ver-
tices and 597165 edges. The transactions were labeled by
bank experts, based on a set of internal rules. Suspect trans-
actions are named alerts. After further investigation, some of
the alerts are sent to state institutions for a thorough analy-
sis of their fraudulent character; these particular transactions

1http://graphomaly.upb.ro/Date/Libra_bank_
3months_graph.zip



are called reports. In this paper we consider only alerts as
anomalies. Each vertex is associated with weights equal to
the number of anomalous transactions it is involved in.

We used Isolation Forest (IF) [15] in the PyOD [16] im-
plementation for anomaly detection on the features listed in
section 2; IF gave very good results in [1] and was preferred to
other detectors. We fitted IF on the historical data, for which
the transactions graph and all features were already available.
The fitting produces anomaly scores, that are sorted decreas-
ingly (the higher the score, the more abnormal the vertex).
Note that the whole operation is unsupervised. The transac-
tions of the first day were processed one by one with our pro-
posed algorithm, each time updating the basic features. Af-
ter the update, the IF score was computed for the updated
features of all vertices that are modified. The position of
the score in the sorted historical scores is called online rank-
ing; for example a value of 0.01 means that 1% vertices have
higher score and 99% have lower score. If the ranking is be-
low a given threshold, an alert can be raised. At the end of the
day, the transactions of the day are appended to the histori-
cal data, IF is refitted and new historical scores are computed.
This modus operandi is meant to produce quick online deci-
sions; the anomaly detector is fitted at night, when activity is
low. The next day, the same procedure is applied.

We measured the time for online processing of each trans-
action over the fourth month. It includes the execution time
for updating the basic features (Algorithm 1 in complete
form), the computation of the features listed in Section 2.2
and the score calculation by IF. The distribution of the ex-
ecution times is shown in Figure 3. It can be seen that, for
most transactions, the time is between 0.07 and 0.11 seconds.
The average time is 0.0803. The minimum time is 0.044,
while the maximum is 0.55. There are only 84 transactions
for which the computation time is greater than 0.15 seconds.
Hence, the online algorithm is suitable for practical uses, at
least in Libra bank.

Figure 4 shows a histogram of the ratio between the ex-
ecution times of the full recomputation algorithm and of the
proposed online algorithm. Due to the high complexity of full
recomputation, we present only the results for the first day of
the fourth month. The speed-up of the online algorithm is
usually below 5, due to existence of many vertices with low
connectivity. However, in the worst case, the speed-up can at-
tain values over 300; there are two transactions for which the
full recomputation algorithm needs about 29 seconds, while
the online algorithm takes less than 0.1 seconds. Although
the times for the first day are slightly lower, as seen in Fig-
ure 3, we can quite safely say that the ratios given in Figure
4 are representative, since the graph grows in size and both
algorithms will have higher complexities; note also that the
largest overall time (0.55) happens to appear in the first day.

To evaluate the quality of detection, we compare the on-
line algorithm with an a posteriori algorithm, where the fea-
tures are computed at the end of the day, IF is fitted on all

Fig. 3. Histogram of execution times of the online algorithm.

Fig. 4. Ratio of the execution times of full recomputation and
online algorithms, for the first day.

available data (including the current day) and the scores are
computed. Figure 5 shows a histogram of the differences ∆
between the a posteriori ranking and the online ranking for
the nodes that have become abnormal in the fourth month and
were involved directly in transactions. A vertex can be in-
volved across a day in multiple transactions, which results in
multiple online rankings. When comparing to the a poste-
riori score, we use the smallest ranking, i.e., the most dubi-
ous snapshot of the vertex. A positive difference means that
the online ranking is smaller, hence the vertex is more abnor-
mal. The average value of |∆| is 9.97 · 10−4. So, in general,
the difference between the a posteriori and online rankings is
negligible; note that IF is not fully deterministic, hence such
differences cannot be avoided. The mininum ∆ is −0.0183,
while the maximum is 0.0399. Only 12 cases out of 711 were
observed to have a difference greater than 0.01 in absolute
value. Moreover, whenever |∆| > 0.01, the ranking is in
an area that is not in the usual anomaly range. For example,
when ∆ = 0.0399, the a posteriori ranking is 0.074 and the
online ranking is 0.034; when ∆ = −0.0183, the a poste-
riori ranking is 0.038 and the online ranking is 0.054. We



Fig. 5. Difference between a posteriori and online ranking.

conclude that the online algorithm keeps very close to the a
posteriori nightly run; when the differences are large, they do
not change the anomaly decision.

5. CONCLUSIONS

We have presented an online algorithm for updating the
egonet and reduced egonet features, with application to a
graph of bank transactions. Although not yet implemented to
achieve maximum speed, the algorithm is fast enough for real
time use and much faster than the full recomputation of the
features of the updated graph. For a real dataset of transac-
tions, the proposed online procedure has similar performance
with a batch a posteriori algorithm that refits the anomaly
detector daily.

6. REFERENCES

[1] B. Dumitrescu, A. Băltoiu, and Ş. Budulan, “Anomaly
detection in graphs of bank transactions for anti money
laundering applications,” IEEE Access, vol. 10, pp.
47699–47714, 2022.

[2] X. Li, S. Liu, Z. Li, X. Han, C. Shi, B. Hooi, H. Huang,
and X. Cheng, “Flowscope: Spotting money laundering
based on graphs,” in Proc. AAAI Conference on Artifi-
cial Intelligence, 2020, vol. 34, pp. 4731–4738.

[3] L. Akoglu, M. McGlohon, and C. Faloutsos, “Oddball:
Spotting anomalies in weighted graphs,” in Pacific-Asia
Conference on Knowledge Discovery and Data Mining.
Springer, 2010, pp. 410–421.

[4] I. Molloy, S. Chari, U. Finkler, M. Wiggerman,
C. Jonker, T. Habeck, Y. Park, F. Jordens, and R. van
Schaik, “Graph analytics for real-time scoring of cross-
channel transactional fraud,” in International Confer-
ence on Financial Cryptography and Data Security.
Springer, 2016, pp. 22–40.

[5] A.E. Wegner, L. Ospina-Forero, R.E. Gaunt, C.M.
Deane, and G. Reinert, “Identifying networks with com-
mon organizational principles,” Journal of Complex
Networks, vol. 6, no. 6, pp. 887–913, 2018.

[6] A. Elliott, M. Cucuringu, M.M. Luaces, P. Reidy,
and G. Reinert, “Anomaly detection in networks
with application to financial transaction networks,”
arXiv:1901.00402, 2019.

[7] A. Grover and J. Leskovec, “node2vec: Scalable
feature learning for networks,” in Proc. 22nd ACM
SIGKDD Int. Conf. Knowledge Discovery and Data
Mining, 2016, pp. 855–864.

[8] W. Yu, W. Cheng, C.C. Aggarwal, K. Zhang, H. Chen,
and Wei Wang, “Netwalk: A flexible deep embedding
approach for anomaly detection in dynamic networks,”
in Proc. 24th ACM SIGKDD Int. Conf. Knowledge Dis-
covery & Data Mining, 2018, pp. 2672–2681.

[9] A.M. Mubalaike and E. Adali, “Deep learning approach
for intelligent financial fraud detection system,” in 3rd
Int. Conf. Computer Science and Engineering (UBMK),
2018, pp. 598–603.

[10] K. Ding, J. Li, R. Bhanushali, and H. Liu, “Deep
anomaly detection on attributed networks,” in Proc. Int.
Conf. Data Mining. SIAM, 2019, pp. 594–602.

[11] S. Bandyopadhyay, S.V. Vivek, and M.N. Murty, “Out-
lier resistant unsupervised deep architectures for at-
tributed network embedding,” in Proc. 13th Int. Conf.
Web Search and Data Mining, 2020, pp. 25–33.

[12] L. Akoglu, H. Tong, and D. Koutra, “Graph based
anomaly detection and description: a survey,” Data min-
ing and knowledge discovery, vol. 29, no. 3, pp. 626–
688, 2015.

[13] W. Hilal, S.A. Gadsden, and J. Yawney, “Financial
fraud: A review of anomaly detection techniques and re-
cent advances,” Expert Systems with Applications, vol.
193, pp. 116429, 2022.

[14] X. Ma, J. Wu, S. Xue, J. Yang, C. Zhou, Q.Z. Sheng,
H. Xiong, and L. Akoglu, “A comprehensive survey
on graph anomaly detection with deep learning,” IEEE
Trans. Knowledge and Data Engineering, 2021.

[15] F. T. Liu, K.M. Ting, and Z.-H. Zhou, “Isolation forest,”
in 8th IEEE Int. Conf. Data Mining. IEEE, 2008, pp.
413–422.

[16] Y. Zhao, Z. Nasrullah, and Z. Li, “PyOD: A Python
Toolbox for Scalable Outlier Detection,” Journal of Ma-
chine Learning Research, vol. 20, no. 96, pp. 1–7, 2019.


