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ABSTRACT
We present a new approach to the incoherent dictionary learn-
ing problem using a barrier function that promotes incoher-
ence. This function has a context-dependent quadratic term
and a distance barrier term that can be used in both local
and global structures. This strategy achieves better results in
terms of error representation and incoherence of the dictio-
nary, compared with the standard problem. We demonstrate
on several datasets that this function can improve the perfor-
mance of dictionaries in classification problems.

Index Terms— dictionary learning, incoherence, sparse
representation, classification

1. INTRODUCTION

Dictionary Learning (DL) is a method used in signal pro-
cessing and machine learning to represent signals as a lin-
ear combination of an overcomplete basis of vectors, named
atoms. The signals are usually represented under a sparsity
constraint. This refers to the property of involving only a
small number of atoms in the representation problem. This
strategy is useful and it has a great impact on many applica-
tions, such as image denoising, inpainting, compression, fea-
ture extraction, signal reconstruction, clustering, and classifi-
cation.

For a given set of N signals of size m, stored compactly
in matrix Y ∈ Rm×N , the dictionary learning problem can
be formulated as

min
D,X

∥Y −DX∥2F
s.t. ∥xℓ∥0 ≤ s, ℓ = 1 : N

∥dj∥ = 1, j = 1 : n,

(1)

where the variables are the dictionary matrix D of size m×n,
the sparse representation matrix X of size n × N and the
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sparse constraint s. The main task of this problem is to find
a suitable approximation Y ≈ DX . In this way, each signal
from Y is computed as a weighted sum of s atoms from D
having the corresponding coefficients in matrix X .

The optimization problem is solved in two main stages:
dictionary update and sparse coding update. In the first stage,
the sparse representation is considered fixed, and the dictio-
nary D is updated in the direction that minimizes the recon-
struction error. In the next stage, given the current dictionary,
the sparse coefficients are updated for each signal. The prob-
lem is solved iteratively by successively going through the
two stages, usually for a fixed number of iterations. In this
way, good local optima can be obtained. For the update of
the coefficient representation matrix X , a fitting solution is
Orthogonal Matching Pursuit (OMP) [1] algorithm; for the
update of the dictionary matrix D, there are several available
methods [2]. A good choice for the current problem is the
AK-SVD algorithm [3], which is an approximate form of the
K-SVD method [4]. The AK-SVD algorithm is also prefer-
able due to its low complexity and good performance.

Sparse representations and dictionary learning methods
can be applied to problems involving supervised classifica-
tion. An example of a sparse representation method is SRC
(sparse representation-based classification) [5]. Two inter-
esting dictionary learning methods involving discriminative
penalty functions are Discriminative K-SVD [6] and Label
Consistent K-SVD [7]. The first method solves the sparse
representation problem while building a classifier matrix re-
sponsible for the feature classification, which shares the same
coefficient matrix with the dictionary. The second method
extends the discriminative problem by adding a new term
responsible for producing sparse representations consistent
with the class labels. Other relevant studies regarding the
incoherence representation of sparse metrics used in clas-
sification problems exist. For example, in [8] the authors
improve sparse signal representation by updating the dic-
tionary using the method of optimal directions (MOD) and
then applying a dictionary rank shrinkage step to reduce mu-
tual coherence. Another good example is presented in [9],
where the authors introduce an adaptive dictionary learning



algorithm that addresses the consistency of learned quanti-
ties by approximating observed signals as a sum of rank one
matrices.

Overall, incoherence is a desirable property in Dictionary
Learning algorithms for classification problems. It enhances
the discriminative power of the learned dictionaries. Inco-
herent dictionaries facilitate independent representation of
the data, making it easier to discriminate between different
classes. This is the main motivation for our work.

The content of this paper is organized as follows. In Sec-
tion 2, we present the Incoherent Dictionary Learning (IDL)
problem in a form that can be used for classification prob-
lems. Section 3 contains our main contribution, namely an
IDL approach to classification using a distance barrier func-
tion (promoting incoherence), which can be a suitable substi-
tute for the existing problem. We propose two formulations;
the first is the simple modification of the IDL problem with
the proposed barrier; the second is inspired by the triplet loss
function used in machine learning, but never in the context
of dictionary learning. Section 4 contains the experimental
details of our tests and the main results. We present here
results obtained on seven datasets: YaleB Face [10], AR Face
[11], CMU PIE [12], Scene 15 [13], Caltech101 [14], UCF50
and HMDB51 action banks [15]. The proposed methods were
compared to the standard IDL problem and with three other
dictionary learning approaches, Projective Dictionary Pair
Learning (DPL) [16], Self-Expressive Locality-Adaptive La-
tent Dictionary Pair Learning (SLatDPL) [17] and Low-rank
Shared Dictionary Learning (LRSDL) [18], that are part of
the state of the art competitors.

2. INCOHERENT DICTIONARY LEARNING

This section presents the standard Incoherent Dictionary
Learning problem for classification tasks. Considering a
set of feature vectors Y = [Y1, . . . ,Yc, . . . ,YC ], where
Yc ∈ Rm×Nc represent the set of samples corresponding to
class c and C is the number of classes, we intend to learn a
local dictionary, Dc, for each class. The role of each dictio-
nary is to obtain good representations for the corresponding
class and bad representations for the rest of the classes. The
objective function is built by extending the original DL prob-
lem (1) with an additional term that promotes incoherence
between classes:

C∑
i=1

∥Yi −DiXi∥2F + γ

C∑
i=1

∑
j ̸=i

∥∥D⊤
i Dj

∥∥2
F
, (2)

where γ > 0 is a trade-off factor. After solving (2), a test
signal y ∈ Rm is classified by identifying the dictionary with
the smallest representation error

c = argmin
i=1:C

∥y −Dixi∥, with ∥xi∥0 ≤ s. (3)

The problem (2) was presented in [19], where the authors in-
troduced a discriminative measure between pairs of dictio-
naries from different classes. In this way, the dictionaries are
projected into quasi-orthogonal spaces, while preserving the
majority of their representational capabilities.

Problem (2) can be solved following an approach similar
to the AK-SVD method. The sparse representation stage can
be solved with OMP, since the incoherence terms do not de-
pend on the coefficients X . In the dictionary update stage,
each atom of a dictionary Di is updated sequentially in the
direction of a space capable of good representation for the
current class, being at the same time nearly orthogonal to
the other class spaces. Notice that the objective depends on
the scalar products of an atom with all atoms from different
classes during the update. However, there may be atoms far
enough for which the incoherence is satisfactory for classifi-
cation and should not be considered. In the following section,
we propose to solve this issue by introducing a selection pro-
cedure based on the coherence between atoms.

3. INCOHERENT DICTIONARY LEARNING VIA
DISTANCE BARRIER

In this section, we reformulate the IDL problem in the con-
text of defining an incoherent distance barrier (IDB) function
that is responsible for the discrimination of dictionaries from
different classes. This formulation was used before in the
context of incoherent frames [20]. Moreover, this strategy
demonstrates good behavior in problems involving the design
of dictionaries for the simple purpose of representation. We
propose extending the approach to the classification problem
to promote inter-class incoherence. The IDB problem has the
objective function

C∑
i=1

∥Yi −DiXi∥2F + γ

C∑
i=1

∑
j ̸=i

f (Di,Dj) , (4)

where f(·) is the function promoting incoherence.

3.1. Incoherent Dictionary Learning via distance barrier

In this subsection, we present the first proposed version of
IDB. We use the distance barrier function

b(Di,Dj) =
∑
k

∑
l

[
max(0,M − ∥d(i)

k − d
(j)
l ∥

2)+ (5)

max(0,M − ∥d(i)
k + d

(j)
l ∥

2)
]
,

where we define a soft margin M of the distance between
atoms. Notice that the function takes into account both sce-
narios, in which the atoms have the same or the opposite di-
rection. Denoting µ the desired mutual coherence between
two atoms of different classes, we can define a margin M as
in [20].



Remark 1. The soft margin can be defined based on the mu-
tual coherence constraint between a pair of atoms (di,dj).
The imposed coherence constraint

|dT
i dj | ≤ µ, ∀i ̸= j (6)

is equivalent to{
∥di − dj∥2 ≥M
∥di + dj∥2 ≥M

, ∀i ̸= j (7)

where M = 2(1− µ).

To improve the incoherence target, we define a function
f(·) to be inserted in (4), by the addition of terms of the form

fj(dj) = ∥WjD̄
T
j dj∥2 + λb(dj), (8)

where D̄j is the matrix obtained by concatenating all the dic-
tionaries but that of the j-th class. The first term is quadratic
and the second one is the barrier defined before. The matrix
Wj is a diagonal weighting matrix

w2
ij = max(|dT

i dj |/µ, 1), (9)

that imposes conditions for all atoms. The barrier functions
b(·) prioritizes the update of the nearby atoms [21]. The first
term discourages coherence for all-atom pairs, while the sec-
ond, penalizes only pairs of too-close atoms.

The problem is solved by following a block coordinate
descent procedure for a single atom dj while the rest are fixed.
The update is made using a gradient descent method

dj ← dj − γkgj(dj), (10)

where

gj(dj) = Fxj + D̄jW
2
j D̄

T
j dj (11)

+ λ

 ∑
∥di−dj∥≤M

(di − dj) +
∑

∥di+dj∥≤M

(−di − dj)

 ,

where F =
[
Yi −

∑
ℓ ̸=j dℓx

⊤
ℓ

]
Ij

is the representation error;

Ij denotes the indices of the nonzero positions on the jth row
of coefficient matrix Xi; see the AK-SVD method [3] for
details on the gradient of the error term.

Note that this strategy ensures a global incoherence be-
tween dictionaries from different classes. On the other hand,
it is well-known that local incoherence at a dictionary level
can improve the representation capabilities. The proposed
method can be enhanced by combining the global barrier (be-
tween dictionaries of different classes) with a local barrier
(between atoms of the same dictionary).

3.2. Incoherent Dictionary Learning via triplet distance
barrier

In this subsection, we present a different approach for the dis-
tance barrier function, inspired from an idea used before in
the triplet loss cost function [22]. We rewrite the incoherent
dictionary learning objective function (4) as follows

C∑
i=1

∥Yi −DiXi∥2F + γ

C∑
i=1

∑
j ̸=i

b̃(Di,Dj) (12)

where the new distance barrier function b̃(Di,Dj) is defined
as ∑
(d(a),d(p),d(n))

[
max(0,M + ∥d(a) − d(p)∥2 − ∥d(a) − d(n)∥2)

+ max(0,M + ∥d(a) − d(p)∥2 − ∥d(a) + d(n)∥2)
+ max(0,M + ∥d(a) + d(p)∥2 − ∥d(a) − d(n)∥2)

+ max(0,M + ∥d(a) + d(p)∥2 − ∥d(a) + d(n)∥2)
]
.

The sum goes over all triplets of atoms (d(a),d(p),d(n)) with
d(a),d(p) ∈ Di and d(n) ∈ Dj . The distance margin M
ensures a minimum distance between a positive pair of atoms
(d(a), d(p)) (an anchor and a positive atom) and a negative
pair (d(a), d(n)) (the anchor and a negative atom). In the
context of an atom update, we consider the updated atom as
the anchor and any other atom from the same dictionary class
as a positive atom. In contrast, any other atoms from differ-
ent dictionary classes are considered negative atoms. Note
that this time we do not use the quadratic term used before
in IDB. Since we use triplets of atoms to build the distance
barrier, we name it the Incoherent Triplet Distance Barrier
(ITDB); by extension, we also name (12) ITDB. By following
this strategy, we intend to obtain a more compressed structure
of atoms in the same dictionary. In contrast, the rest of the
atoms of different classes should be far away, ideally at dis-
tances larger than the margin M . Notice that the optimization
of each atom is made similarly to IDB. The gradient of the
first norm inside the max(·) function ensures that the opti-
mization is made in the direction that brings positive atoms
closer together; the second norm ensures that the direction
that brings closer negative pairs of atoms is neglected.

Compared to the IDB method, the ITDB problem implies
expensive computations for the distance barrier function since
it uses triplets of atoms instead of pairs of atoms. To over-
come this bottleneck, we propose two solutions that use a
small percentage of the possible triplets. A natural way to do
that is to use a portion of the negative atoms to form triplets.
Since the selection is made randomly, we might not use the
closest negative atoms to the current anchor. However, we
expect all the negative atoms also to have a compressed rep-
resentation; few of them may be representative of their gen-
eral direction. The second solution is to compute all triplet



Dataset name # Samples # Dim # Classes

YaleB 2414 504 38
AR 2600 540 100
CMU PIE 11554 256 68
15 Scene 4485 3000 15
Caltech101 9144 3000 102
HMDB51 6766 5000 51
UCF50 6680 5000 50

Table 1. Dataset summary

distances M + ∥d(a) ± d(p)∥2 − ∥d(a) ± d(n)∥2 and use a
percentage of the pairs that have the highest values. In our
implementation, we have chosen to select a percentage of the
negative atoms to form triplets.

Remark 2. To better understand the role of the barrier func-
tion b̃(Di,Dj) and its soft margin, we expand the first term
of the sum, for a single triplet (d(a),d(p),d(n)) of atoms. We
consider here that the distance barrier is not respected; hence
we drop off the max function.

M + ∥d(a) − d(p)∥2 − ∥d(a) − d(n)∥2

= M + (2− 2(d(a))⊤d(p))− (2− 2(d(a))⊤d(n))

= M + 2(d(a))⊤(d(n) − d(p)) (13)

We can see that the soft margin determines a coherence
boundary between the anchor atom and the direction that
brings closer atoms of the same class but does not bring the
anchor closer to the negative atoms.

4. EXPERIMENTS

In this section, we present the experiment details alongside
the obtained results. For our tests, we used seven datasets.
We employed our methods in classification tasks, such as face
recognition (Yale B Face, AR Face, CMU PIE Face), scene
category recognition (15 Scene), object recognition (Cal-
tech101) and action recognition (UCF50 action, HMDB51
action). The datasets summary is shown in Table 1.

The YaleB Face dataset (Extended Yale Face Database B)
is a facial recognition dataset with 2.414 grayscale images of
38 different persons. All the registrations are obtained under
different lighting conditions and poses. AR Face is a more
extensive dataset containing facial images. This dataset con-
sists of 4.000 color images of 126 individuals (70 men and
56 women). Each person has 26 distinct images with various
expressions, light conditions, and occlusions. For the experi-
ments, we followed the same procedure in [16] and used only
2.600 of available registrations. The last facial image dataset
is CMU PIE Face (Carnegie Mellon University Pose, Illumi-
nation, and Expression). This dataset contains 41.368 images
of 68 subjects. Each individual is captured under 13 different

poses, 43 illumination conditions, and 4 facial expressions.
The three datasets were chosen to test the performance and
robustness of our methods underneath various poses, illumi-
nations, and expression conditions. We used random face fea-
tures for the face recognition tasks provided in [23].

15 Scene is a dataset designed for scene recognition prob-
lems. This dataset contains 4.485 images from 15 categories.
The images have different sizes and resolutions. The Cal-
tech101 dataset is a well-known dataset used in object recog-
nition problems. It consists of 9.144 images of 101 distinct
objects and an additional background class. Each category
contains between 40 and 800 images of different sizes, poses,
and light conditions. For both datasets, scenes, and objects,
we used the spatial pyramid matching (SPM) features [13],
[24]. The image features are obtained by concatenating mul-
tiple histograms of bags of feature representations from four
different pyramid levels. The final obtained features are re-
duced to 3.000 for both datasets using PCA.

The last used datasets are HMDB51 and UCF50 action
bank, which are video datasets designed for action types
recognition. The HMDB51 dataset consists of 6.766 reg-
istrations of actions corresponding to 51 different human
activities. The UCF50 dataset contains 6.680 registrations
from 50 different action categories. We used the action bank
features for the classification problem, available in [15]. The
action bank features were reduced to 5.000 by PCA.

All the experiments were performed on a Desktop PC with
Ubuntu 20.04 as the operating system. The available hard-
ware resources include an Intel i9 processor with 36 cores,
256 GB RAM, and an NVIDIA RTX3090 video card. The im-
plementations were written in Matlab and are available on our
research project website. We measured the performance of all
methods in terms of accuracy, training time, and testing time.
The results are obtained over 10 independent rounds with dif-
ferent initializations and dataset split seeds. We compared
the IDB and ITDB methods with the standard IDL problem
and three additional competitors, Projective Dictionary Pair
Learning (DPL) [16], Self-Expressive Locality-Adaptive La-
tent Dictionary Pair Learning (SLatDPL) [17], and Low-rank
Shared Dictionary Learning (LRSDL) [18]. For the DPL1,
SLatDPL2 and LRSDL3 methods, we used the original code
provided by the authors. We followed the experimental de-
tails provided in [16]. For the proposed experiments, we split
each dataset for training and testing. Depending on the num-
ber of available samples per class, we used a fixed number of
samples for training, while the rest were used for tests. For
the training stage, we used 32 samples per class for the YaleB
dataset and 20 samples for the AR Face dataset, while for the
rest of the datasets, only 30 training samples were used.

For datasets used in the DPL paper, we used the hyperpa-
rameters provided by the authors. For the rest of the datasets,

1http://www4.comp.polyu.edu.hk/ cslzhang/code/DPL NIPS14.zip
2https://github.com/Daitu/SLatDPL
3https://github.com/tiepvupsu/DICTOL

https://asydil.upb.ro/software/


IDL IDB ITDB DPL SLatDPL LRSDL

YaleB 94.28 94.35 94.47 97.65 97.25 91.58
AR 93.13 93.07 93.92 98.43 98.12 96.83
CMU PIE 90.56 90.60 91.98 93.25 91.24 90.41
15 Scene 95.62 94.17 92.39 95.89 94.57 73.07
Caltech101 69.16 72.18 70.42 70.72 62.89 73.61
HMDB51 29.74 29.89 30.81 25.57 19.40 18.40
UCF50 59.94 60.14 60.63 59.87 55.77 60.15

Table 2. Accuracy results (percentages)

we performed an additional hyperparameter search and used
τ = 0.05 and λ = 0.005 (and λ = 0.05 for the HMDB51
dataset). For the SLatDPL method, since the hyperparam-
eters are not provided in [17], we computed a custom hy-
perparameters search on our own. We fixed γ = 0.5 and
proceed with a grid search with the α and β parameters over
{0.005, 0.05, 0.5, 1, 5, 50, 5000}. The dictionary sizes and
the number of iterations were taken as in the original papers.
For the LRSDL method, we followed the instruction provided
in the paper for three of the used datasets. For the rest of them,
we used 20 atoms per class dictionary and 40 shared atoms;
the three λ parameters were decided based on a hyperparame-
ter tuning procedure over {0.005, 0.05, 0.5, 5, 50, 500, 5000}.

For the IDL, IDB, and ITDB methods, we only used dic-
tionaries of size n = 40 with a sparsity constraint of s =
20. All the training stages were performed over 10 itera-
tions. The experiments show that 10 iterations are enough
for the algorithms to converge. For the hyperparameter tun-
ing process, we conducted experiments using a grid search
strategy; the evaluated margins are M ∈ {1.2, 1.4, 1.6, 1.8},
for the γ and λ parameters, we used combinations of val-
ues from {0.005, 0.05, 0.5, 5, 50, 500, 5000}. For the ITDB
method tests, we only used perc = 5% and perc = 10% (de-
pending on the number of training samples) of negative atoms
to construct atom triplets. We provide the used hyperparame-
ters in Table 4.

We summarize the main results in Table 2, where we
present the obtained accuracies over all the datasets. More-
over, Table 3 gives the measured times over the training and
testing stage. The results show the good behavior of the
proposed methods. The IDB and ITDB methods generally
overperform the accuracy of the IDL problem, but also that of
the DPL, SLatDPL, and LRSDL methods for several datasets
(Caltech101, CMU PIE, HMDB51, UCF50 for SLatDPL; the
last two for DPL; the last three for LRSDL). ITDB is better
than IDB in all databases but 15 Scene and Caltech101. How-
ever, a disadvantage of the proposed methods is the running
time, which is larger. In training, IDB is clearly faster than
ITDB, sometimes up to 10 times; however, testing times are
similar because the testing procedure (3) is identical for the
two methods.

IDL IDB ITDB DPL SLatDPL LRSDL

YaleB 13.97 11.20 81.35 1.35 6.59 36.33
31.46 32.24 31.63 0.28 0.06 0.81

AR 42.70 127.40 1361.58 3.50 21.36 180.13
41.24 42.27 41.78 0.33 0.15 1.61

CMU PIE 23.30 17.20 56.02 1.44 4.37 439.09
420.62 419.93 420.81 0.50 1.25 69.16

15 Scene 9.14 22.15 28.192 5.27 200.84 0.22
43.13 43.12 42.62 0.54 3.64 2.63

Caltech101 803.31 883.59 2544.06 40.80 1610.80 337.51
474.96 471.19 467.60 3.29 71.58 78.93

HMDB51 273.60 93.13 1038.41 59.12 1958.49 309.73
240.77 241.53 240.05 2.31 27.17 32.07

UCF50 328.36 100.27 1066.39 55.98 1955.90 307.16
225.09 223.93 222.07 2.16 26.10 31.12

Table 3. Execution times of the algorithms

5. CONCLUSIONS

This paper proposes two new formulations for the Incoherent
Dictionary Learning (IDL) problem. We introduce two dis-
tance barrier functions that ensure incoherence between dic-
tionaries from different classes. The results demonstrate good
behavior of our methods compared with the standard IDL
method and three other state-of-the-art methods, over several
datasets.
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