
Community-Augmented Local-Link Intensity: a
score for anomaly detection in graphs

Theodor-Adrian Badea
Department of Automatic Control and Computers

Univeristy Politehnica of Bucharest
Bucharest, Romania
theodor.badea@upb.ro

Bogdan Dumitrescu
Department of Automatic Control and Computers

Univeristy Politehnica of Bucharest
Bucharest, Romania

bogdan.dumitrescu@upb.ro

Abstract—Graphs can model various systems, activities, or
interactions. As a consequence, the ability to detect anomalies in
graph-structured data is needed in many scenarios. This paper
introduces Community-Augmented Local-Link Intensity (CALLI),
an algorithm for quantifying the abnormality extent of nodes in
a weighted digraph. Experiments are performed on both synthet-
ically generated and real graphs modeling financial transactions.
Throughout the tests, CALLI is directly used as the sole decision-
making anomaly score, but also as a feature in a conventional
outlier detection approach.

Index Terms—anomaly detection, outlier detection, graphs,
graph-structured data

I. INTRODUCTION

One of the earliest definitions of anomalous observations
dates back to 1969, in [1] an outlier being characterized as
an observation that ”appears to deviate markedly from other
members of the sample in which it occurs”. Generally, the
terms ”anomaly” and ”outlier” are used interchangeably, as a
consequence of having similar meanings and of being hard to
formally define individually. There is a subtle and contextual
line between these terms. In most cases, an observation is
called an anomaly when it is confirmed as illegitimate, whereas
an outlier can be produced by the same legitimate process
as the other observations, but it diverges from the normal
distribution.

Naturally, graphs are an appropriate means of represent-
ing both structural information and relationships between in-
stances. Suitable applications arise in a multitude of scenarios
where observations exhibit considerable relationships: packets
flowing on the network, social platforms, search engines,
biochemistry, etc. Perhaps the most widespread and intuitive
use case for graph-structured data is in finance. Fraud is a
major challenge in this area, therefore overcoming it plays an
important role. Anomalous behavior, e.g. money laundering
or illicit payments, might be identified as unusual patterns
in financial transactions modeled under the shape of graphs.
In such networks, an account can be represented as a node
(vertex), and a weighted and directed edge between two
vertices models a transaction between these accounts.

This work was supported by a grant of the Ministry of Research, Innovation
and Digitization, CNCS - UEFISCDI, project number PN-III-P4-PCE-2021-
0154, within PNCDI III.

A. Content and contributions

We feel appropriate to expand the context of anomaly
detection for graph-structured data provided so far, therefore
we further include in the next subsection a view of the problem
we address in this paper. Then, we shall proceed in Section
II with a succinct depiction of related work from domain
literature. Our main contribution is presented in Section III.
It consists of introducing a new algorithm for measuring the
abnormality of nodes in graphs: Community-Augmented Local-
Link Intensity (CALLI). The fourth section is dedicated to
experimental results. We test the proposed algorithm both in a
direct manner, but also in a conventional approach. For the first
round of experiments, we rely on CALLI as a sole anomaly
score and test its capability of straightforwardly identifying
anomalous vertices. Then, we include CALLI in the so-called
conventional anomaly detection workflow in graphs: used as
a feature, in combination with other several promising graph
features. We follow the approach from [2], hence we choose
Isolation Forest [3] as the anomaly detection algorithm into
which we feed the constructed set of features.

B. Problem statement

The input around which each of our experiments is focused
is a directed graph G = (V, E), constructed from a list of
transactions, either synthetically generated or real. Vertices
constituting the set V represent bank accounts and transactions
between each two accounts form the set of directed edges E ;
the amounts transferred during the transactions are the weights
of edges. The structure of the transactions lists used for
conducting the experiments in this paper is broadly described
in [2]. The resulting graphs are simple, i.e. there can be
only one edge connecting two vertices (direction considered)
and there is no edge having the same vertex as both origin
and destination (self-loop). Our purpose is to find tools that
classify the nodes of the graph into two categories: normal
and abnormal. The notion of anomaly in this context can be
better understood from the data description.

We use the data described in [2]. A first graph is constructed
from actual bank accounts and transactions between them
provided by Libra Internet Bank. A preprocessing step was
carried out. After it, the graph contains 385100 nodes and
597165 edges, with an average in/out degree of 1.55. A total

TABLE I
GRAPHS CHARACTERISTICS

graph nodes edges alerts Wa reports Wr

Libra 385100 597165 600 1034 15 22
G7 50000 377789 248 1910 - -
G12 50000 629242 249 1910 - -
G17 50000 879091 250 1910 - -
G22 50000 1126992 248 1910 - -

of 517 transactions were labeled as potentially fraudulent
by specialized bank personnel and called alerts. Moreover,
11 of these transactions are assigned with reports, meaning
that they have been reported to state authorities for further
investigations. There are 600 vertices involved in suspicious
transactions, with a cumulated number of alerts Wa = 1034.
The 15 vertices that are part of reported transactions, amount
to Wr = 22 reports.

There are also synthetically generated graphs, also thor-
oughly presented in [2], that have a general ”normal” structure
in which anomalies suitable for fraud (particularly money
laundering) detection have been injected: cliques, stars, and
rings. There are four such graphs, each with 50000 nodes and
different number of edges, thus the average degrees range
from ≈ 7 to ≈ 22. Anomalous transactions sum up to a
total of 1910, with 248-250 distinct vertices involved in such
transactions. To keep the terminology of the Libra graph,
we name alerts the anomalies. Table I-B presents the main
characteristics of the Libra and synthetic graphs.

The goal is to identify anomalies (nodes labeled as suspi-
cious) in the graphs presented above. In our experiments, we
tackle this task in an unsupervised manner: anomaly detection
is performed and then we compare the results with the ground-
truth labels (assigned by bank personnel in the real graph and
injected anomalies in the synthetically generated graphs).

II. RELATED WORK

OddBall [4] is a popular technique for tackling the graph
anomaly detection problem. It leverages the concept of egonet,
which is defined as the single step neighborhood around a
node, including the node itself, its direct neighbors, and all the
edges among this group of vertices. The approach is to extract
egonet-based features and find patterns followed by most of
the egonets in the graph, thus spotting anomalous egonets and,
implicitly, nodes. Examples of features include total weight of
the egonet edges, number of triangles, etc. The patterns to be
analyzed are formed as power laws and then outlierness scores
are defined based on deviations, thus also providing a way of
sorting nodes according to their abnormality.

In [2], the reduced egonet (egored) is defined as the egonet
from which the nodes that have only connections with the
center are removed. Using egored features is shown to enhance
the detection ability with respect to approaches based on
egonet only, at least in graphs resulting from bank transactions.
Also, the bibliography of [2] contains many useful entries on
this topic.

A method for detecting anomalous graph substructures (sub-
graphs) is described in [5]. The score is built by iteratively
finding the best substructure which yields the largest com-
pression when every occurrence is replaced by a super-node.
Anomalies are identified according to the compression: the
better the compression, the lower the anomaly score.

The problem of anomaly detection in graphs (particularly
signals indexed by graphs) is presented in [6] from the
perspective of graph signal processing and graph spectral
theory. The approach incorporates the community structure
into an extended adjacency matrix, which can be interpreted as
a change of the original graph through inclusion of new edges.
Then, vertices whose signal values (which, for example, can
represent account balances) are different than expected for the
community they belong are flagged as potential anomalies.

A technique which further exploits the community structure
is shown in [7]. It addresses the problem of finding outliers in
bipartite graphs in two steps. First, communities are formed
and relevance scores are assigned to the nodes. The second
step of the approach consists in computing normality scores
based on the previously assigned relevance scores.

AutoPart [8] is another community-oriented method for
finding outliers in graphs. Nodes are clustered into commu-
nities through a process of organizing the adjacency matrix
into blocks according to densities, then nodes with multiple
cross-community connections are considered anomalous.

CADA [9] is an algorithm that assigns abnormality scores
to nodes, considering the extent to which a node belongs to a
multitude of communities without strongly belonging to one
of them.

A statistical approach is proposed in [10], a multitude of
scores being built through means of constructing a ”normal”
and a p-value measurement. We mention three of these node
scores, resulted from the geometric average of weights: GAW,
GAW10, GAW20.

III. PROPOSED APPROACH

This section is committed to presenting the main contribu-
tion of this paper. We propose Community-Augmented Local
Link Intensity (CALLI): an algorithm for constructing anomaly
scores for vertices, in an attempt to quantify the outlierness
by analyzing the intensity of the connections between a
node and its neighbors and the extent to which a node is
intensely connected to adjacent communities compared to
its own. Mainly, our method falls in the category of direct
approaches. We are concerned with measuring the abnormality
in a straightforward manner and generate features which may
be directly assimilated as scores. However, throughout the
experiments, we shall also regard the output of the proposed
algorithm as an engineered graph feature.

The development of the algorithm is inspired by work
described in [11] and [9]. We also acknowledge the influence
of the statistical scores from [10] mentioned above, in the
sense that it hinted towards working with the geometric
average of weights as a way of measuring the interactions
between vertices.

A. Prerequisite: community detection

A prerequisite of the CALLI approach is unfolding the
community structure of the graph. Communities are sets of
nodes with high inwardly connection densities, whereas ver-
tices belonging to different communities being sparsely linked.
The procedure partitions the graph into densely interconnected
sub-structures and uncovers sets of nodes with considerable re-
lations. In the development of the proposed algorithm, we took
into consideration exclusively the computation time required
for performing this essential pre-processing stage. Therefore
we used the Louvain community detection method, which has
the advantage of having limitations only in terms of storage
memory, rather than computation time [12]. However, we feel
that any other technique for finding the community structure
of the graph can be adopted.

B. Algorithm description

Let x be a node of the weighted digraph G = (V, E) and
let E (x, y) denote the weight of the directed edge with origin
x and destination y. We define:

P (x) = {y ∈ V | (y, x) ∈ E} (1)

and
S (x) = {y ∈ V | (x, y) ∈ E} (2)

the sets of predecessors and successors of the node x. In plain
terms, P (x) is the set of nodes which have outgoing edges
towards x, whereas S (x) is the set of nodes with incoming
edges from x.

Then, we proceed to computing the geometric average of
weights corresponding to the edges between vertices in P (x)
and x, and between x and vertices in S (x), designated by
Pgaw (x) and Sgaw (x), respectively:

Pgaw (x) =

 ∏
y∈P(x)

E (y, x)

 1
|P(x)|

, (3)

Sgaw (x) =

 ∏
y∈S(x)

E (x, y)

 1
|S(x)|

, (4)

where |·| denotes the cardinality.
Based on Pgaw (x) and Sgaw (x), we further introduce a

fundamental measure of intensity of the link between the node
x and an adjacent vertex y. If y ∈ P (x), we define

iy (x) = max (Pgaw (x) , Sgaw (y)) . (5)

If y ∈ S (x):

iy (x) = max (Pgaw (y) , Sgaw (x)) . (6)

The measure of intensity for x w.r.t. a neighboring node y
attempts to quantify the strength of the connection between
the two nodes in relation to other incoming or outgoing edges.
Considering the case of y ∈ P (x), the intensity iy (x) is the
most powerful link by viewing either y as a predecessor of x
or x as a successor of y. Contrarily, for y ∈ S (x), the intensity

iy (x) determined from the perspective of either regarding x
as being a predecessor of y or the perspective of y being a
successor of x. In other words, we quantify how strong is the
connection between x and y based on the most dominant of
the two nodes in relation with the edge orientation between
them and in relation to the other edges adjacent to both of
these vertices.

The next step of the proposed algorithm elevates the in-
tensities iy (x) to community level. Let us consider the set
C (x) = {cy | ∃ (y, x) ∈ E} ∪ {cy | ∃ (x, y) ∈ E}, where
cy is the identifier of the community to which the node y
belongs. We can straightforwardly regard C (x) as the list of
communities to which neighboring vertices of x belong. For
each neighboring community identified by c ∈ C (x) of x,
we compute an augmented community connection intensity
com ic (x) formulated as follows:

com ic (x) =
∑

y ∈ P(x) ∪ S(x)
y ∈ c

iy (x) . (7)

By means of the community intensities, we augment the
intensities iy (x) to the community structure of the graph and
quantify the strength of the relation between x and its adjacent
communities, including its own.

Having computed the augmented intensities of x w.r.t. the
adjacent communities, we introduce the following measure of
density:

com d (x) =

∑
c ∈ C(x) com ic (x)

com icx
(8)

The density com d (x) characterizes the neighborhood of x
embedding at the same time both the strengths of the connec-
tions between x and its predecessors and successors, and the
strengths of the connections between x and the community
structure of the graph. One can notice that com d (x) is not
determined by the number of edges directly, but by intensities
of the links. It quantifies the extent to which a node is strongly
connected to adjacent communities relative to its own. The
density value is larger for a vertex ”more intensely” linked to
the neighboring communities than to the community it belongs
to.

Lastly, the CALLI score of a vertex x is defined as the ratio
between the total density across all the neighboring vertices
of x and the density of x:

CALLI (x) =

∑
y ∈ P(x) ∪ S(x) com d (y)

com d (x)
. (9)

IV. EXPERIMENTS

Throughout this section, we present the experimental re-
sults. As mentioned, we test the proposed algorithm both
as an anomaly score to directly identify suspicious nodes
and as a feature fed into the Isolation Forest [3] algorithm
(alone and in combination with other several features). In
Isolation Forest, we use 200 trees for fitting the model, the
other parameters being the default ones, as shown in the
PyOD implementation [13]. Graphomaly library [14] has been

used for extracting additional node features. The following are
used for the synthetic graphs: in/out degree, in/out amount,
egonet edge density, egored in/out relative degree, egored
in/out relative amount, and egored edge density. For the Libra
bank graph, we add some more features to the previous list:
average in/out amount and egored average in/out amount. All
of them are thoroughly described in [2]. The method based on
these egonet and reduced egonet features, fed into the Isolation
Forest anomaly detector, is called EGO. In addition to these
features, we likewise test CALLI in comparison with three
metrics (anomaly scores) from [10]: GAW, GAW10, GAW20;
these scores are added and the resulting method is called here
GAW.

We also combine CALLI with these methods. In conjunction
with EGO, we append the CALLI score to the EGO features
and run Isolation Forest for anomaly detection. The resulting
method is called EGO & CALLI. In conjunction with GAW,
we first scale the CALLI score then add it to the GAW scores.
This operation is necessary for making the addition relevant.
The scaling procedure is performed in accordance with the
following formula:

s = tmin +
n− rmin

rmax − rmin
(tmax − tmin) , (10)

where s is the result (scaled CALLI score), n is the initial
value (original CALLI score), rmin and rmax are the minimum
and maximum of the reference scaling interval (minimum and
maximum of the CALLI scores), respectively, and tmin and
tmax are the minimum and maximum of the target interval
(minimum and maximum of the cumulated GAW scores),
respectively. We call GAW & CALLI this combined score.

Some programs that are relevant for CALLI and the testing
environment can be found at http://asydil.upb.ro/software/.

Tables II–VII present the results obtained with the above
methods. TPR 0.1% is the true positive rate for the first 0.1%
of the nodes with highest anomaly scores. Here, the TPR is
computed taking into account the weights of the nodes; for
example, in the Libra graph, the total number of alerts is
1034; if a node appears in three transactions marked as alerts,
then its (relative) weight is 3/1034. TPR 0.2%, 0.5% and 1%
are defined similarly. We are interested in these rates because
in financial applications only a small number of transactions
or accounts can be checked thoroughly by a human expert,
hence we desire good accuracy of the top positives given by
the machine learning algorithm. AUC 1% is the area under
curve in the first 1% of the TPR curve; this is an integral
measure, characterizing the whole interval. AN 0.1% is the
number of anomalous nodes in the top 0.1% highest anomaly
scores. This time the nodes are counted individually; they are
no longer weighted. So, for the Libra graph, there are 600
distinct nodes involved in alerts. AN 0.2%, 0.5% and 1% are
defined similarly. An identical reasoning applies for Table VII
(results for reports in the Libra graph).

We notice that TPR for CALLI on the synthetic datasets
tends to increase with the density of the graph; this is rather
surprising, since cliques, rings and stars are more difficult to

find in a denser graph; the other methods show an opposite
behavior. CALLI clearly outperforms GAW, and for the most
dense two of the syntethic graphs, G17 and G22, the TPR
0.1% and 0.2% approach the EGO results. In some cases, the
number of nodes correctly identified as anomalies is the same,
but the TPR is different. For example, in Table V, CALLI,
EGO, and EGO & CALLI display the same AN 0.1%; this
is justified by the fact the uncovered anomalous nodes are
different, and they may have different weights; the methods
with larger TPR find nodes with larger weights, when AN
is the same. When testing CALLI in conjunction with GAW
on synthetic graphs, in each experiment CALLI improves the
results compared with GAW; however, GAW does not seem
to be a suitable method for these datasets. For this reason,
CALLI alone yields better results than GAW & CALLI.
When combined with EGO and fed into the Isolation Forest
algorithm, our proposed score has mixed results. In Table II,
it can be seen that TPR 0.1% and 0.2% are slightly higher for
EGO alone, but AN 0.1% and AN 0.2% are the same, hinting
that other anomalous nodes are detected. The situation changes
for TPR 0.5% and 1%, as well as for AN 0.5% and 1%, where
EGO & CALLI is better than EGO. Similar behavior can be
observed in Tables III–V. The combination of CALLI and
EGO proves most beneficial in Table IV, managing to obtain
the best results among all the tested techniques.

Table VI shows results for CALLI closer to Tables II and
III, obtained for the least dense synthetic graphs. The Libra
graph is a sparse graph; recall that it has a density of only
1.55. We can see an improvement for GAW, outperforming
CALLI for TPR 0.2%, 0.5%, 1% and for all AN thresholds.
Remarkably, TPR 0.1% is larger for CALLI, but AN 0.1%
shows a difference of 16 anomalous nodes in favour of GAW,
implying that CALLI detects anomalies with larger weights.
When combining CALLI and GAW, each TPR is better than
individually, most notably for 0.1% and 0.2%. The situation is
almost similar for AN, only 1% displaying the same number
of anomalous nodes detected. EGO has the best TPR for 0.2%,
0.5%; only TPR 0.1% is slightly improved by combining it
with CALLI. For reports, GAW, CALLI, and their combination
produces identical TPR 0.1% and AN 0.1%. The same for
EGO and EGO & CALLI. GAW & CALLI has the largest
TPR 0.2% and AN 0.2%.

Note that in almost all cases, the methods find the nodes
with higher weights first. For example, in Table VI, CALLI
finds 153 anomalous nodes in the first 1% results, which
corresponds to a rate of 153/600 = 0.255; the corresponding
weighted TPR is 0.315, which means that the found 153 nodes
have higher weights than the average.

CONCLUSION AND FURTHER WORK

Our proposed algorithm proved capable of detecting anoma-
lous nodes both in synthetic and real graphs, with an apparent
affinity for dense graphs. Furthermore, used as a feature and
fed into Isolation Forest or directly as a score in conjunction
with other scores, CALLI showed able to at least offer a
new perspective and uncover different anomalous vertices if

TABLE II
SYNTHETIC GRAPH G7 RESULTS

Method TPR 0.1% TPR 0.2% TPR 0.5% TPR 1% AUC 1% AN 0.1% AN 0.2% AN 0.5% AN 1%
CALLI 0.0921 0.1309 0.2314 0.3335 0.2123 14 22 38 58
GAW 0.0094 0.0094 0.0361 0.0387 0.0267 2 2 6 7
EGO 0.3346 0.6220 0.9759 0.9911 0.8214 50 100 211 237

EGO & CALLI 0.3262 0.6204 0.9775 0.9932 0.8213 50 100 214 238
GAW & CALLI 0.0471 0.0759 0.1236 0.2047 0.1237 8 12 21 34

TABLE III
SYNTHETIC GRAPH G12 RESULTS

Method TPR 0.1% TPR 0.2% TPR 0.5% TPR 1% AUC 1% AN 0.1% AN 0.2% AN 0.5% AN 1%
CALLI 0.0853 0.1586 0.3209 0.5105 0.3023 13 26 55 90
GAW 0.0000 0.0073 0.0251 0.0487 0.0259 0 1 5 9
EGO 0.3298 0.5995 0.9597 0.9749 0.8056 50 100 198 216

EGO & CALLI 0.3230 0.6005 0.9550 0.9759 0.8036 50 100 196 218
GAW & CALLI 0.0497 0.1063 0.1901 0.3026 0.1785 8 17 31 52

TABLE IV
SYNTHETIC GRAPH G17 RESULTS

Method TPR 0.1% TPR 0.2% TPR 0.5% TPR 1% AUC 1% AN 0.1% AN 0.2% AN 0.5% AN 1%
CALLI 0.2686 0.5047 0.6984 0.7267 0.6012 45 87 129 141
GAW 0.0058 0.0293 0.0445 0.0581 0.0412 1 5 9 12
EGO 0.3115 0.5984 0.9414 0.9670 0.7927 50 100 188 206

EGO & CALLI 0.3147 0.5995 0.9435 0.9670 0.7950 50 100 190 207
GAW & CALLI 0.1497 0.2288 0.3236 0.3885 0.2858 25 39 56 71

TABLE V
SYNTHETIC GRAPH G22 RESULTS

Method TPR 0.1% TPR 0.2% TPR 0.5% TPR 1% AUC 1% AN 0.1% AN 0.2% AN 0.5% AN 1%
CALLI 0.3136 0.5639 0.6597 0.6822 0.5882 50 97 123 131
GAW 0.0487 0.0644 0.1466 0.1707 0.1215 8 11 25 31
EGO 0.3319 0.6047 0.9251 0.9565 0.7888 50 100 180 195

EGO & CALLI 0.3288 0.6000 0.9351 0.9613 0.7896 50 100 184 198
GAW & CALLI 0.2241 0.3288 0.4581 0.5670 0.4238 37 55 76 98

TABLE VI
LIBRA GRAPH RESULTS FOR ALERTS

Method TPR 0.1% TPR 0.2% TPR 0.5% TPR 1% AUC 1% AN 0.1% AN 0.2% AN 0.5% AN 1%
CALLI 0.1025 0.1509 0.2418 0.3153 0.2199 38 63 112 153
GAW 0.0977 0.1857 0.5019 0.7515 0.4500 54 102 247 414
EGO 0.3791 0.5000 0.6518 0.7476 0.5985 151 221 312 379

EGO & CALLI 0.3946 0.4894 0.6441 0.7389 0.5900 152 215 307 374
GAW & CALLI 0.2379 0.4584 0.5106 0.7524 0.5244 101 202 250 414

TABLE VII
LIBRA GRAPH RESULTS FOR REPORTS

Method TPR 0.1% TPR 0.2% TPR 0.5% TPR 1% AUC 1% AN 0.1% AN 0.2% AN 0.5% AN 1%
CALLI 0.1364 0.1364 0.2273 0.3636 0.2041 3 3 4 6
GAW 0.1364 0.2727 0.5000 0.5909 0.4191 3 4 7 9
EGO 0.2273 0.4091 0.6818 0.9091 0.6060 4 6 9 13

EGO & CALLI 0.2273 0.4091 0.6818 0.7727 0.5877 4 6 9 11
GAW & CALLI 0.1364 0.5000 0.5000 0.5909 0.4672 3 7 7 9

not exhibiting an improvement in terms of TPR. Also, we
stress that CALLI relies on a single score, whereas GAW is
constructed by a summation of three scores and EGO approach
used in our experiments assembles 10 and 14 features for
synthetic and Libra graphs, respectively.

A direction for further work is certainly integrating egonet
and reduced egonet concepts into the algorithm in the sense
that these could even replace the current graph community
structure foundation of CALLI.

REFERENCES

[1] Frank E. Grubbs. Procedures for detecting outlying observations in
samples. Technometrics, 11(1):1–21, feb 1969.

[2] Bogdan Dumitrescu, Andra Băltoiu, and Ştefania Budulan. Anomaly
detection in graphs of bank transactions for anti money laundering
applications. IEEE Access, 10:47699–47714, 2022.

[3] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In
Proceedings of the 2008 Eighth IEEE International Conference on Data
Mining, ICDM ’08, page 413–422, USA, 2008. IEEE Computer Society.

[4] Leman Akoglu, Mary McGlohon, and Christos Faloutsos. oddball: Spot-
ting anomalies in weighted graphs. In Mohammed J. Zaki, Jeffrey Xu
Yu, B. Ravindran, and Vikram Pudi, editors, Advances in Knowledge
Discovery and Data Mining, pages 410–421, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

[5] Meng-Chieh Lee, Hung T. Nguyen, Dimitris Berberidis, Vincent S.
Tseng, and Leman Akoglu. Gawd: Graph anomaly detection in weighted
directed graph databases. In Proceedings of the 2021 IEEE/ACM
International Conference on Advances in Social Networks Analysis and
Mining, ASONAM ’21, page 143–150, New York, NY, USA, 2022.
Association for Computing Machinery.

[6] Rodrigo Francisquini, Ana Carolina Lorena, and Mariá C.V. Nascimento.
Community-based anomaly detection using spectral graph filtering.
Applied Soft Computing, 118:108489, 2022.

[7] Jimeng Sun, Huiming Qu, Deepayan Chakrabarti, and Christos Falout-
sos. Neighborhood formation and anomaly detection in bipartite graphs.
In In ICDM, pages 418–425, 2005.

[8] Deepayan Chakrabarti. Autopart: Parameter-free graph partitioning and
outlier detection. In PKDD, 2004.

[9] Thomas J. Helling, Jan C. Scholtes, and Frank W. Takes. A community-
aware approach for identifying node anomalies in complex networks. In
COMPLEX NETWORKS, 2018.

[10] Andrew Elliott, Mihai Cucuringu, Milton Martinez Luaces, Paul Reidy,
and Gesine Reinert. Anomaly detection in networks with application to
financial transaction networks, 2019.

[11] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg
Sander. Lof: Identifying density-based local outliers. SIGMOD Rec.,
29(2):93–104, may 2000.

[12] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Eti-
enne Lefebvre. Fast unfolding of communities in large networks. Journal
of Statistical Mechanics: Theory and Experiment, 2008(10):P10008, oct
2008.

[13] Y. Zhao, Z. Nasrullah, and Z. Li. PyOD: A Python Toolbox for Scalable
Outlier Detection. Journal of Machine Learning Research, 20(96):1–7,
2019.

[14] Paul Irofti, S, tefania Budulan, Bogdan Dumitrescu, and Andra Băltoiu.
Graphomaly, 2022. https://pypi.org/project/graphomaly/.

