
Incoherent frames design and dictionary learning using a
distance barrier✩

Denis C. Ilie-Ablachim, Bogdan Dumitrescu

Department of Automatic Control and Computers
University Politehnica of Bucharest, Romania

Emails: denis.ilie ablachim@upb.ro, bogdan.dumitrescu@upb.ro.

Abstract

We present a unitary approach to the design of incoherent frames and to
dictionary learning, by using a single function that promotes incoherence for
both problems. This function has a context-dependent quadratic term and a
distance barrier term that was never used in this context. We provide simple
and efficient algorithms for both problems. Numerical results show that we
can obtain large frames whose incoherence is better than of those designed
by other methods. Also, in dictionary learning, we can improve both the
representation error and the incoherence of the dictionary, compared with
the standard approach.

Keywords: mutual coherence, frames, dictionary learning, sparse
representations, optimization

1. Introduction

Incoherence is the property of overcomplete bases to have vectors with
well separated directions. Frames [1] are matricesD ∈ Rm×n that satisfy the
relation A∥y∥2 ≤ ∥DTy∥2 ≤ B∥y∥2, ∀y ∈ Rm, for some positive constants
A, B . Incoherent frames have applications in coding and communications,
see [2, 3, 4, 5] among many others. In sparse representations [6] and dictio-
nary learning (DL) [7], incoherence allows provable properties of achievable
representations and of important algorithms. So, there is continuous inter-
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est in designing incoherent frames and dictionaries and, despite very good
results in the last decade, progress is still possible.

Problems. We give algorithms for two incoherence problems, both in-
volving a matrix D ∈ Rm×n, with m > n, whose columns are denoted dj ,
j = 1 : n, have unit norm, and are named atoms. The first is to find
Grassmannian frames, which are the solution of the problem

min
D

max
1≤i<j≤n

|dT
i dj |

s.t. ∥dj∥ = 1, j = 1 : n
(1)

The objective function is the mutual coherence of the frame. The atoms are
as far apart as possible.

The second is that of incoherent DL, formulated as

min
D,X

∥Y −DX∥2F + γf(D)

s.t. ∥dj∥ = 1, j = 1 : n
∥xi∥0 ≤ s, i = 1 : N

(2)

where Y ∈ Rm×N is the data matrix, ∥xi∥0 is the number of nonzeros in the
i-th column of xi, s is the sparsity level, and γ > 0 is a trade-off factor. The
first term of the objective of (2) is the overall sparse representation error,
and f(·) is a function promoting incoherence, to be given later.

The same function is used to approximate (1) with

min
D

f(D)

s.t. ∥dj∥ = 1, j = 1 : n
(3)

Previous work. Grassmannian frames can be designed using analytical
approaches [8, 9], which are possible only for a small number of (m,n) pairs.
Some of the early algorithms [10, 11, 12] used the Gram matrix DTD and
its spectral properties; they give good results for small dimensions, but are
slow and do not scale well; a notable exception is [13], which applies a
proximal mapping method to a modified objective that contains both the
frame and the Gram matrix. Algorithms based on repelling forces, like
those between electrical charges [14, 15], or collision models [16] behave
very well for small and sometimes medium values of m and n, but their
convergence tends to become very slow for large frames. Approximation
with convex problems [17], extended to constrained incoherence problems
[18], is also a successful approach. Other methods in the same vein are
[19, 20, 21], showing good complexity for large dimensions. Most of the
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methods rely more or less on heuristics, either in formulating the problem
or in the optimization algorithm; there are few algorithms with guaranteed
convergence (to a local minimum, since the problem is not convex) regardless
of parameter values, notably [10, 20]; although this is certainly a desirable
quality, other algorithms were also successful in practice, especially for large
frames where complexity is paramount. In [22, 23], incoherent frames are
designed in the context of compressed sensing, with the purpose of improving
recovery properties of measurement matrices.

Some works for incoherent DL use (2), with f(D) = ∥DTD − I∥2F
and gradient [24, 25] or proximal [26] methods. A different approach uses
f(D) = ∥DTD − I∥∞ and proximal algorithms [27] (an alternative algo-
rithm imposes a hard constraint on the mutual coherence). Other papers
[28, 29] introduce special decorrelating operations in a standard DL algo-
rithm, with the purpose of keeping coherence under a given value. A more
detailed presentation of these issues can be found in [7].

Contribution and contents. In Section 2, we propose a new function for
designing Grassmannian frames via (3). This function contains a weighted
quadratic term that replaces the infinity norm associated with the max
from (1) and a distance barrier; the first term was optimized in [19], but
the second was never used in this context. We solve the problem with a
gradient algorithm. A key parameter is the target coherence, which can be
selected using a bisection approach, for which we give all details. Numerical
results presented in Section 3 show that the algorithm can robustly obtain
the best known mutual coherences for large frames of various dimensions.
We then use the same function, in Section 4, for the DL problem (2), which
is solved with an algorithm in AK-SVD [30] style. The experimental results
in Section 5 show that we can obtain dictionaries that are both better fitted
to the data and more incoherent than those obtained by AK-SVD.

2. Incoherent frames

2.1. Objective function

Let µ be the (desired) mutual coherence. The constraint

|dT
i dj | ≤ µ, ∀i ̸= j (4)

is equivalent to {
∥di − dj∥2 ≥M
∥di + dj∥2 ≥M

, ∀i ̸= j (5)
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with M = 2(1 − µ) (and so 0 < M < 2). Note that one of the above two
conditions is automatically satisfied, the first when dT

i dj < 0, the second
when dT

i dj > 0.
We can thus define a soft distance barrier function

b(dj) =
∑
i ̸=j

[max(0,M − ∥di − dj∥2) + max(0,M − ∥di + dj∥2)] (6)

that will serve to loosely bound the coherence. Such terms were introduced
in a contrastive loss function in [31].

To find Grassmannian frames, we use in (3) an objective function f that
has two terms: one is quadratic and the other is the barrier. The function
is

f(D) =
1

2

n∑
j=1

fj(dj), (7)

where
fj(dj) = ∥WjD̄

T
j dj∥2 + λb(dj). (8)

Here, D̄j is the matrix D without its j-th column, λ > 0 is a trade-off factor
and Wj = diagi(wij) is a diagonal weighting matrix defined by

w2
ij = max(|dT

i dj |/µ, 1). (9)

We note that the first term from (8) was used in [19]; the addition of the
second term provides more flexibility. Both terms encourage the current
atom to get farther away more from nearby atoms than from more distanced
atoms; the first term imposes conditions for all atoms, as the weights wij

are always at least equal to 1; in the second term, only the nearby atoms
matter: if atom di is such that |dT

i dj | ≤ µ, then its contribution to the
barrier (6) is zero.

2.2. Optimization algorithm

To minimize (7), we adopt the typical block coordinates descent pro-
cedure that optimizes one atom while all the others are fixed. Due to the
quadratic form of (7), optimizing atom dj is equivalent to minimizing (8).

Assuming also that the weights (9) are fixed for the current dj , we use
the gradient of (8) with respect to dj to define

gj(dj) =
1

2

∂fj
∂dj

= D̄jW
2
j D̄

T
j dj+λ

 ∑
∥di−dj∥≤M

(di − dj) +
∑

∥di+dj∥≤M

(−di − dj)


(10)
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We attempt the minimization of (8) using a gradient method. The basic
step is

dj ← dj − γkgj(dj), (11)

where the step size γk at the k-th frame update iteration is

γk = γ0
ρk

2νk
, (12)

where ρ < 1 is a step size decrease factor and νk ∈ 0 : νmax is an integer,
chosen as explained below. We tacitly assume that the atom given by (11)
is normalized after the gradient step. In a frame update iteration, all atoms
are updated via (12) in a random order different at each iteration.

Algorithm 1 presents the operations of our method, named IDB (Inco-
herent frames via Distance Barrier). As typical in gradient algorithms, it is
useful to decrease the step size as we approach the solution (in our case, a
local minimum, since the overall problem is not convex). A decrease factor
ρ is usual for this purpose. However, while large steps are useful especially
in the first iterations, they can also produce undesired effects. We introduce
a simple adaptive measure to cope with this problem. Let cmax = ∥D̄T

j dj∥∞
be the maximum correlation between the current atom and another atom.
We first use (11) with step size given by (12) with νk = 0. If the maximum
correlation of the new atom with the other atoms is less than cmax, meaning
that coherence has been reduced, then we keep the atom; if not, we halve
the step size, i.e., we increase νk and proceed similarly until either the max-
imum correlation decreases or νk = νmax; in the latter case, the maximum
correlation may not decrease, but the step size is small and instability is
unlikely to occur.

For stopping the algorithm, we provide a tolerance ε. If the current frame
reaches the desired coherence within this tolerance, the algorithm is consid-
ered successful and the iterations are stopped. Otherwise, the algorithm is
run for a maximum number of iterations, K.

Remark 1. (Complexity) Due to the stopping criterion, a successful frame
design with IDB may take a small number of iterations. However, if the
desired coherence is not reached, the full number of iterations is run.

The complexity of an iteration is low. The computation of the gradient
needs two matrix-vector multiplications. Similarly, computing the weights
in steps 5-6 of Algorithm 1 and coherences in steps 9 and 12 require matrix-
vector multiplications. All other operations are vectorial. Since an iteration
consists of a sweep of all atoms, its complexity is O(mn2).
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Algorithm 1: IDB (Incoherent frames via Distance Barrier)

Data: frame size m× n
maximum number of iterations K
target mutual coherence µ
trade-off factor λ from (8)
initial step size γ0
step size decrease factor ρ
maximum halving steps number νmax

stopping tolerance ε
Result: incoherent frame Dbest

1 Initialization: D ← random matrix with ∥dj∥ = 1, ∀j
2 Set Dbest = D and µbest equal to the coherence of D
3 for k = 1 to K do
4 for j = random permutation of 2 : n do
5 Set v = DTdj , vj ← 0
6 Compute weights: w2 = max(|v|/µ, 1)
7 Compute gradient gj(dj) with (10)
8 Initialize step size: γ ← γ0
9 Set maximum correlation: cmax ← maxi |vi|

10 for νk = 0 : νmax do
11 Compute new atom with (11): d← dj − γgj(dj) and

normalize
12 if maxi ̸=j |dT

i d| < cmax then
13 break

14 Halve step size: γ ← γ/2

15 Save atom: dj ← d

16 Decrease step size: γ0 ← ργ0
17 Compute µk, the coherence of D
18 if µk < µbest then
19 µbest ← µk, Dbest ←D

20 if µk − µ < ε then
21 break
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Remark 2. (Convergence) As the objective function (7) is not convex, the
gradient method we propose can only reach a local minimum. This would
be guaranteed only if the gradient step size is small enough, which we only
enforce heuristically. However, as it will be seen, once IDB reaches a frame
having the coherence equal to the target µ, it tends to stay there. Here is
an argument.

When the mutual coherence attains the target µ in Algorithm 1, the
soft barrier (6) is equal to zero and Wj = I for all j. So, the gradient 10
becomes

gj(dj) = D̄jD̄
T
j dj . (13)

Consider the ideal case of an equiangular frame D and assume that the
target coherence µ is equal to the coherence of D and so dT

i dj = ±µ for all
i ̸= j. Since, for any vector x ∈ Rm, it holds that [2]

x =
1

a

n∑
i=1

(dT
i x)di,

where a is a constant, by taking x = dj and the right combination of signs,
it results that

dj =
1

a
dj + µ

∑
i ̸=j

di, (14)

which means that dj has the direction of the sum of all other atoms. Since
(13) becomes

gj(dj) = µ
∑
i ̸=j

di,

we conclude that the gradient gj(dj) has the same direction as dj . So, even
though the gradient is not zero, the atom remains unchanged after normal-
ization. This shows that, at least for equiangular frames, our objective 7
has the same global minimum as (1) and this minimum is also a stationary
point for our method.

Of course, not all frames are equiangular and the above conditions are
not met in practice, but they suggest that a small step size can assure near-
stationarity. So, this is an explanation for the nice behaviour of IDB when
mutual coherence reaches values near µ.

2.3. Bisection search

The most important parameter of IDB is the target coherence µ. Simi-
larly to algorithm ISPM [19], IDB has the property of either converging to
µ independently of the random initialization or hovering rather far from it;
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Fig. 1, to be explained later, shows the typical behavior in case of success.
Although empirical choice of µ can give quick results for an experienced
user, a bisection procedure can be used for systematic design. Since bisec-
tion was only mentioned and ISPM was used under its possible performance
in comparisons reported in some recent works, we detail here the procedure
in Algorithm 2.

The initial search interval [µmin, µmax] can be chosen easily as follows.
The minimum value of the target coherence, µmin, is taken as the lower
bound of the coherence, namely the largest between the Welch [32] and
Levenstein [14] bounds (the latter valid for large n/m):

max

(√
n−m

m(n− 1)
,

√
3n−m2 − 2m

(m+ 2)(n−m)

)
. (15)

For the upper end of the interval, we can take µmax as the coherence of a
random frame.

Bisection runs as usual. We run IDB with µ at the middle of the current
search interval. The design is considered a success if the target coherence is
reached within 10ε; the upper end of the interval is lowered to the obtained
coherence value. If the design is a failure, we raise the lower end of the
interval to µ; however, we check if the obtained coherence is lower than
the upper end; if so, we move it accordingly; this may happen in the first
few bisections, when the interval is still large. We run the bisection for a
maximum number of iterations, Kbis, or until the search interval has become
smaller than the tolerance ε used in IDB; a special exit condition is when
the obtained coherence is outside the search interval, which means that the
decrease potential of the method has been exhausted.

3. Results—incoherent frames

In the IDB Algorithm 1, with very few exceptions that will be explicitly
mentioned, we have used the following values of the parameters: λ = 0.2,
γ0 = 0.1, ρ = 0.999, νmax = 4. They were found using an empirical grid
search over a few dimensions m and n. Although these values may not
be necessarily the best for each m and n, they are remarkably robust over
a broad range of dimensions. The number of iterations and the stopping
tolerance are K = 2000, ε = 10−4. In the bisection Algorithm 2, we have
used a maximum number of iterations Kbis = 15.

For comparison we have used the best algorithms for frames of medium
and large size, as indicated by the results in recent literature. The experi-
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Algorithm 2: Best coherence using bisection.

Data: frame size m× n
initial coherence bounds µmin, µmax

stopping tolerance ε
maximum number of bisections Kbis

Result: incoherent frame D

1 Set µbest = 1
2 for i = 1 : Kbis do
3 Compute µ = (µmin + µmax)/2
4 Run IDB(m,n, . . . , ε) and obtain frame Di with coherence µi

5 if µi < µbest then
6 µbest ← µi, D ←Di

7 if µi < µ+ 10ε then
8 if µi ≥ µmax then
9 break

10 µmax ← µbest

11 else
12 µmin ← µ
13 µmax ← min(µi, µmax)

14 if µmax − µmin ≤ ε then
15 break

ments have been performed on a laptop with an i7 CPU at 2.6GHz (6 cores)
and 16GB RAM.

ISPM [19] is in direct relation with IDB: its objective is the first term of
(7); however, the optimization algorithm is inspired from the power method,
hence quite different from IDB; like in IDB, we have added a stopping crite-
rion to the original algorithm ISPM and used the bisection procedure from
Algorithm 2. Unlike most other methods, ISPM designs unit norm tight
frames (UNTF), hence it has an extra constraint. The code for IDB and
ISPM can be found at https://asydil.upb.ro/software/.

Iterative Collision-Based Packing (ICBP) [16] uses an heuristic algorithm
that attempts to pack spheres with maximal radius, centered on the unit
sphere. The radius is adjusted iteratively. The algorithm may give different
results for different initializations. Like for IDB and ISPM, the coherence
is not necessarily decreasing in each iteration. We have used authors’ im-

9

https://asydil.upb.ro/software/


Table 1: Coherence results for dimensions from [20].

m n bound ISPM FLIP ISPM ICBP IDB
+FLIP

50 60 0.0582 0.0762 0.0666 0.0634 0.0644 0.0626
90 100 0.0335 0.0532 0.0384 0.0384 0.0383 0.0374
100 110 0.0303 0.0494 0.0349 0.0350 0.0345 0.0340
200 210 0.0155 0.0282 0.0181 0.0181 0.0185 0.0176
300 310 0.0104 0.0203 0.0122 0.0123 0.0124 0.0120
500 510 0.0063 0.0134 0.0074 0.0075 0.0077 0.00732
500 550 0.0135 0.0201 0.0156 0.0151 0.0155 0.01511
700 710 0.0045 0.0101 0.0053 0.0054 0.0056 0.00526
900 1100 0.0142 0.0185 0.0163 0.0156 0.0160 0.0155

2000 2500 0.0100 0.0130 0.0126 0.0121 - 0.01094

plementation1, running the algorithm for 2000 iterations if not otherwise
mentioned.

FLIP [20] attempts to directly optimize (1), with a procedure based on
linear programming (LP), with guaranteed convergence (to a local mini-
mum). Authors’ implementation2 recommends using the ’active-set’ option
of the MATLAB function linprog; since this option is obsolete and with
the ’dual-simplex’ option the LP algorithm often fails to converge for the
FLIP problem, we have used the ’interior-point’ option. We have used a
stopping tolerance of 10−3, like in the original code; smaller values give a
slight improvement of the result, with a significant increase of the execution
time. The results and execution times are in line with those from [20], with
small variations.

For other methods, like TELET [21], where we did not find a public
version of the software, we take the coherence results directly from the re-
spective papers, but we are unable to provide execution times.

Table 1 shows results for frame sizes used in [20], with low values of the
overcompleteness factor n/m. The lower bound from the third column is
given by (15). The results for FLIP are the best between those from [20] and
those obtained by us (in most cases, they were nearly equal). ISPM+FLIP
denotes the algorithm in which the frame produced by ISPM is used as

1https://codeocean.com/capsule/7026868/tree/v1
2https://se.mathworks.com/matlabcentral/fileexchange/

98164-design-of-grassmannian-frames
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Table 2: Execution times (in seconds) for designing the frames from Table 1.

m n ISPM FLIP ICBP IDB

50 60 2 3 6 14
90 100 6 8 24 34

100 110 5 13 29 62
200 210 31 120 206 275
300 310 81 530 533 768
500 510 211 3490 5880 2220
500 550 174 4230 8040 3770
700 710 589 12400 16500 5300
900 1100 805 45800 120000 31200

initialization for FLIP; its results are taken from [20]. It is visible that
the best results are given by IDB, although FLIP and ICBP are not far
behind. We note that ICBP converges for most of the dimensions in the
given number of iterations. The performance of ISPM is not that good
for near-square frames. We have also tested IFD-AMPP [13], which gives
results similar to those of FLIP and ICBP in the first half of the table; for
the larger frames, the results are worse, even behind ISPM; for large n/m
IFD-AMPP appears to diverge, so we did not use it in further tests.

Table 2 gives the execution times of the algorithms. ISPM is the fastest,
ICBP the slowest, while IDB and FLIP have comparable execution times,
with an advantage for FLIP at low dimensions and for IDB at high dimen-
sions, which suggests that IDB scales better. The low execution time of
ISPM explains why it was used as initialization for FLIP.

Since IDB and ISPM are run through the bisection algorithm, the total
number of iterations for a design can vary a lot, as the successful designs
take sometimes much less than 2000 iterations; also, the maximum number
of 15 bisection steps is not necessarily attained. For IDB, the total number
of iterations vary between 12950 and 22654 (clearly less than the maximum
of 30000 iterations).

The case 2000×2500, not shown in Table 2, deserves some explanations.
In this case, we have run IDB on a different computer, about 20-30% slower
than our main one. We have used an empirical search, since 2000 iterations
took about two days on that computer; we needed 8 runs to reach the
coherence shown in the table. On the same computer, ICBP needed more
than 3 hours for 10 iterations, so we abandoned the run. The coherence
results for the other methods are taken from [20], where the execution times
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Figure 1: Mutual coherence evolution for algorithm IDB.

are not reported.
Figure 1 shows the mutual coherence evolution in several runs of our

IDB algorithm. Three of them give the best coherence for the respective
dimensions (see again Table 1). The second run for m = 90, n = 100 is
for µ = 0.0380, only slightly higher than the best result of 0.0374; less than
700 iterations are necessary. If we set µ = 0.04, less than 100 iterations are
required for a satisfactory result, and so on as µ grows. So, upper bounds
of the attainable coherence can be quickly obtained, which helps reducing
the total number of iterations in the bisection algorithm. Note that here the
stopping criterion was not imposed and the IDB algorithm has run for 2000
iterations; the figure also illustrates the stable behavior when the target
coherence has been attained, as discussed in Remark 2.

Table 3 shows results for dimensions used in [21], with high overcom-
pletenes factor n/m; the corresponding execution times are given in Table
4. In most cases, the winner is clearly ISPM (inserted in the current bisec-
tion algorithm), with IDB a close second, with occasionally the best perfor-
mance. ISPM is about three times faster than IDB, a fact which makes it
more attractive. We note that we changed the initial gradient step size of
IDB to γ0 = 0.01 in the 20× 5000 example; in the same example, ICBP was
stopped after 30 hours, in which only 500 iterations were made.

As we were preparing the current manuscript, we learned about a new
paper [33], transforming the minimization of the coherence under a tightness
constraint into a unconstrained problem, based on smoothing techniques.
So, the produced frame is near to an UNTF. The resulting algorithm is
called CPM. Some results for frames with overcompleteness factor going
from 2 to 64 are given in Table 5. The results for CPM and ICBP are taken
from [33]; both algorithms are run there for 5000 iterations. We see that
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Table 3: Coherence results for dimensions from [21].

m n bound TELET ISPM FLIP ICBP IDB

23 500 0.2785 0.3703 0.3517 0.3841 0.5386 0.3521
25 600 0.2692 0.3641 0.3434 0.3746 0.5255 0.3440
25 800 0.2871 0.3900 0.3680 0.3966 0.5949 0.3687
25 1000 0.2972 0.4340 0.3850 0.4108 0.6383 0.3863
25 1200 0.3036 0.4486 0.3979 0.4251 0.6636 0.4003
30 800 0.2417 0.3458 0.3171 0.3482 0.4888 0.3174
30 1000 0.2564 0.3655 0.3346 0.3471 0.5717 0.3352
30 1200 0.2655 0.3851 0.3481 0.3753 0.5839 0.3489
40 800 0.1542 0.2909 0.2514 0.2821 0.3213 0.2516
40 1000 0.1809 0.3119 0.2654 0.2949 0.3825 0.2650
40 1200 0.1985 0.3275 0.2776 0.3054 0.3998 0.2770
50 1000 0.1379 0.2788 0.2240 0.2497 0.2902 0.2240
20 5000 0.3645 0.7422 0.5535 0.7448 0.9336 0.5625

IDB is the best in 8 of the 11 examples (tied with ISPM in one example),
while ISPM is best in 3 examples and ICBP only in one.

The overall conclusion is that our IDB method appears to be the best for
frames with small overcompleteness factor n/m. When this factor grows, our
previous ISPM method, used in the proposed bisection procedure, becomes
very competitive, having the best trade-off between coherence results and
execution times. However, IDB gives the best results for high n/m in almost
half of the designs we have tried.

4. Incoherent dictionary learning

To design an algorithm for solving the incoherent DL problem (2), we
adopt the general structure of AK-SVD [30]. In each iteration, since the
function f in (2) does not depend on X, the sparse representations X are
found as usual with Orthogonal Matching Pursuit (OMP) [34]. Then, the
atoms of the dictionary are updated one by one, while keeping the other
atoms fixed; we give below the details of this operation.

Denoting E = Y −DX the error matrix, the error without contribution
of atom dj is

F = [E]Ij + djx
T
j , (16)

where the row vector xT
j contains the nonzero elements of the j-th row of

X, whose (column) indices are Ij . By [E]Ij we denote the restriction of
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Table 4: Execution times (in seconds) for designing the frames from Table 3.

m n ISPM FLIP ICBP IDB

23 500 190 157 790 551
25 600 197 270 1760 573
25 800 377 514 3630 1180
25 1000 611 1150 6100 1380
25 1200 716 1300 9470 2090
30 800 356 567 3700 890
30 1000 413 704 6170 1200
30 1200 762 1770 8860 2030
40 800 368 855 3980 952
40 1000 408 1560 7180 1360
40 1200 703 2740 11300 2000
50 1000 508 2250 6680 1220
20 5000 8130 18800 112000 25800

E to the columns with indices in Ij . The objective for the optimization of
atom dj , when everything else is fixed in (2), is

∥F − djx
T
j ∥2F + γfj(dj), (17)

where the function fj is given in (8) and is the same used for designing
incoherent frames. We note that the first term of (8) is similar to that in
[24], where however there was no weight.

Setting the gradient to zero gives the optimal atom

dj ← Fxj − γgj(dj), (18)

where gj(·) is given by (10). The vector produced by (18) must be normal-
ized.

Then, the representations are updated like in AK-SVD, since the inco-
herence inducing function (8) does not depend on xT

j . The relation is

xj ← F Tdj , (19)

where we use the updated atom given by (18). Once the atom and its
representation are updated, we recompute the error

[E]Ij ← [E]Ij − djx
T
j (20)

and we go to the next atom.
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Table 5: Coherence results for dimensions from [33].

m n bound CPM ISPM ICBP IDB

64 128 0.0887 0.0982 0.1025 0.0965 0.0964
64 256 0.1085 0.1316 0.1311 0.1282 0.1301
64 384 0.1143 0.1484 0.1473 0.1478 0.1473
64 640 0.1187 0.1701 0.1679 0.1725 0.1684
64 960 0.1208 0.1877 0.1850 0.1965 0.1851
64 1280 0.1219 0.2065 0.1975 0.2861 0.1972
64 1600 0.1225 0.2178 0.2077 0.3131 0.2071
64 2240 0.1232 0.2353 0.2235 0.3715 0.2225
64 2880 0.1236 0.2484 0.2356 0.4247 0.2341
64 3520 0.1239 0.2590 0.2455 0.4630 0.2442
64 4096 0.1240 0.2668 0.2527 0.4981 0.2525

The above operations are summarized in Algorithm 3, named IDB-DL.
Only step 5, gradient computation, adds to the complexity of the algorithm,
compared to AK-SVD.

5. Results—dictionary learning

The DL experiments were performed in Matlab (R2022b), on a desktop
with an i7 processor with 16 cores, a base frequency of 2.90 GHz, and 80 GB
RAM. The source code for our algorithm is available at https://asydil.
upb.ro/software/.

The data are generated artificially, using random dictionaries, with an
SNR of about 30 dB. The generated samples are matrices with N = 1000
columns (signals) andm = 64 rows (features). The dictionaries have n = 100
or n = 160 atoms, with a sparsity constraint of s = 5, s = 8, or s = 10.
AK-SVD and our IDB-DL algorithm have been run for 100 iterations. The
execution time of IDB-DL is less than 10% larger than that of AK-SVD,
which is one of the fastest DL algorithms.

Our algorithm has three parameters: M (or µ = 1−M/2), γ and λ. We
have run simulations on a grid covering a relatively large space for the three
parameters. For γ we took values from 10−2 to 101 and for λ from 10−2 to
103, both logarithmically spaced. For the barrier margin M we used values
in {1, 1.2, 1.4, 1.6, 1.8}, corresponding to µ ∈ {0.5, 0.4, 0.3, 0.2, 0.1}.

In Figs. 2 and 3 we give representative results obtained for n = 100
and s = 5, averaged over 100 runs, each using the same random initializa-
tion for IDB-DL and AK-SVD; the results are not much different in other
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Algorithm 3: An iteration of IDB-DL.

Data: frame size m× n
data matrix Y ∈ Rm×N

initial dictionary D ∈ Rm×n

sparsity level s
target mutual coherence µ
trade-off factor λ from (8)
trade-off factor γ from (17)

Result: optimized dictionary D

1 Compute sparse representations: X = OMP(Y ,D, s)
2 Compute error matrix E = Y −DX
3 for j = 1 : n do
4 Compute error F with (16)
5 Compute gradient gj(dj) with (10)
6 Update atom dj with (18) and normalize
7 Update representations with (19)
8 Update error E with (20)

cases. We see that there are many good trade-offs between the two perfor-
mance indices, representation error (per element) ∥E∥F /

√
mN and mutual

coherence, including the case where both are better than in AK-SVD.
In Figure 2, γ = 0.5 is fixed. For small values of λ, which basically

cancel the barrier term in (8), there is a small improvement in both error
and coherence with respect to AK-SVD. When λ grows, there is an interval
where performance improves in both indices. When λ is large, the error
increases while coherence does not change much or even gets worse; as the
gradient depends only on local information, too aggressive atom updates
(18) take the current atom farther from nearby atoms but may move it too
close to other atoms. So, for many λ values, the barrier term has a clear
contribution to the overall improvement.

In Figure 3, λ = 25 is fixed. Small values of the incoherence factor γ
in (17) expectedly make little difference, but usually to the better, with
respect to AK-SVD. As γ grows, positive effects are visible in both error
and coherence. However, error is improved on a smaller interval than the
coherence; a too large value of γ worsens the error and, after a while, also
the coherence. Here the effects of a too aggressive approach, manifested in
a large γ, are obvious, as they lead to a clear deterioration of the coherence.
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Figure 2: Error (up) and mutual coherence (down) results for algorithm IDB-DL, with
γ = 0.5.
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Figure 3: Error (up) and mutual coherence (down) results for IDB-DL, with λ = 25.
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The ideal role of the barrier parameter M is to define a hypersphere of
radius M around an atom that does not contain other atoms. Since the
barrier is soft, this ideal condition is not met, but still the atoms are kept
well apart. A small M value imposes mild constraints on the coherence,
thus allowing also error improvement. We see from Figs. 2 and 3 that, for
M = 1 and M = 1.2, simultaneous improvement in both coherence and
error is possible on a larger range of the parameters γ and λ than for higher
values of M . Expectedly, the best coherence values are obtained for large
M , but only at the expense of a large error.

For a single choice of parameters, the evolution of the error and the
final distribution of the scalar products between atoms are shown in Figure
4, averaged over 100 runs. The error is shown with a mean and standard
deviation plot and the improvement given by our algorithm is obvious. The
change in the scalar products between atoms is visible almost only at the
large values, i.e., where it matters more.

Finally, to illustrate the robustness of the parameters γ and λ, we com-
pare IDB-DL and AK-SVD on a grid with γ ∈ {0.2, 0.5, 1.1.5, 2} and λ ∈
{5, 10, 20, 30, 40, 50}. We generated sets of N = 1000 signals having m ∈
{64, 128} features. The dictionary size is n ∈ {100, 160} atoms, with spar-
sity constraints s ∈ {5, 8, 10}. So, for each γ, λ and M , there are 12 different
experiments, repeated 10 times with different initializations of the dictionar-
ies. Figs. 5 and 6 show the number of times in which IDB-DL gave a better
result than AK-SVD, in terms of error and mutual coherence, for M = 1 and
M = 1.2, respectively. We see that the mutual coherence is almost always
better for IDB-DL, which is not surprising, but also that error is improved
most of the times for many values of the parameters.

6. Conclusion

We have given efficient and fast algorithms for designing incoherent
frames and for solving the incoherent dictionary learning problem. The
designed frames have better mutual coherence than that produced by the
best existing algorithms. The proposed IDB-DL algorithm has the potential
to replace the algorithms solving the standard DL problem, like AK-SVD, as
it produces dictionaries that are not only more incoherent, but also provide
better representations.
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Figure 4: Error evolution (up) and sorted final products |dT
i dj | (down) for IDB-DL, with

M = 1, γ = 0.5 and λ = 25.
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Figure 5: Number of cases where IDB-DL is better than AK-SVD, for M = 1. Left: error.
Right: mutual coherence.
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Figure 6: Number of cases where IDB-DL is better than AK-SVD, for M = 1.2. Left:
error. Right: mutual coherence.
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