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ABSTRACT

We extend the notion of sparse representation to the case
where the atoms are not vectors, but cones, hence infinite
sets. The sparse representation is linear, as usual, but the most
convenient vector is chosen from each selected cone. We give
a cone version of Orthogonal Matching Pursuit (OMP) and
show that its complexity is only a few times larger than that
of OMP. The new cone OMP can be used for anomaly detec-
tion; we apply it with very good results to the detection of
abnormal heartbeats.

Index Terms— sparse representations, dictionary, Or-
thogonal Matching Pursuit, cone atoms, anomaly detection

1. INTRODUCTION

Sparse representations [1] are now used for solving many
problems, like denoising, inpainting, compression, coding,
compressed sensing, and also for machine learning tasks like
classification. The standard sparse representation problem
seeks to approximate a vector y ∈ Rm with a linear com-
bination of few columns of a given dictionary D ∈ Rm×n,
which can be chosen or trained. So, we want to minimize
∥y −Dx∥, where x ∈ Rn has only few nonzero elements.
The columns of D are called atoms.

Problem. We propose here to extend the notion of atom
from a single vector to an infinite set. As an interesting par-
ticular case, we propose the use of cone atoms. Denoting
d ∈ Rm, with ∥d∥ = 1, the central vector, the cone C(d, ρ)
contains all vectors a ∈ Rm, with ∥a∥ = 1, for which
∥a − d∥ ≤ ρ; we call ρ the radius of the cone. Note that
C(d, ρ) is stricto sensu a hypersector of the unit hypersphere
in Rm rather than a cone; however, as a single atom is in fact
used to describe a direction in the context of sparse represen-
tation, the set C(d, ρ) extends to a (infinite) cone.

We interpret now the j-th column of the dictionary D, de-
noted dj , as the central vector of a cone C(dj , ρj), with given
radius ρj . So, besides the dictionary, we need only a set of
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n radii associated with the atoms. To build a sparse repre-
sentation with cone atoms, we use any vector from a cone as
an atom, with the same purpose as in the standard case, to
minimize the representation error. The sparse representation
problem becomes the optimization problem

min
x∈Rn,aj∈Rm

∥y −
∑n

j=1 ajxj∥2
s.t. ∥x∥0 ≤ s

aj ∈ C(dj , ρj), j = 1 : n

(1)

Here, we name aj actual atoms, since they are effectively
used in the representation. The sparsity level is s. Figure 1
illustrates the solution of (1) for s = 2 cones. The optimal
approximation of the signal y is its projection on the plane
generated by a1 and a2; these vectors are such that the plane
is tangent to both cones, thus minimizing the distance to y.

Although (1) looks much more difficult than the standard
sparse representation problem, we will present here an effi-
cient algorithm in the style of Orthogonal Matching Pursuit
(OMP) [2]. Another apparent drawback of our model is the
lack of the reconstruction capability. Indeed, after solving (1),
the reconstruction is possible only if the actual atoms aj are
stored, since they are different for each signal. This may be
impractical, compared with the standard case where only the
indices of the atoms must be stored. So, applications in cod-
ing or compressed sensing are impossible. However, there
are many important applications where reconstruction is not
needed, like denoising, inpainting, classification or anomaly
detection, where it is enough to store the approximation of y
resulted from (1) or the representation error.

Relation to prior work. Our sparse representation method
appears to be the first where the atoms can belong to an infi-
nite set. Several vectors, represented by a single instance, are
used in shift invariant dictionaries [3–5]. Also, multiple vec-
tors can be represented with condensed information, in struc-
tured dictionaries like multi layer [6,7], multi scale [8], sepa-
rable [9].

Although (1) is linear for a signal, we can also say that
there is intrinsic nonlinearity in it when multiple signals are
involved, as it is typically the case, since the actual atoms
aj are not fixed, but chosen from an infinite set. Not only
the standard sparse representation model is considerably en-
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Fig. 1: Optimal approximation of a signal y with the linear
combination x1a1 + x2a2 of two cone atoms.

riched, but also further nonlinearity can be added, since kernel
techniques [10] or their approximations [11] are applicable to
our model. Related work on connections of dictionary learn-
ing with neural networks [12–14] is also of interest.

Contents of the paper. Section 2 presents the algorithm
for computing the projection of an arbitrary vector on a cone
or, equivalenty, for finding the nearest atom from that cone.
This operation will be used in Section 3 to develop a cone
version of OMP. Section 4 shows that our new Cone-OMP
can be successfully used in anomaly detection, illustrating its
use for the detection of abnormal heartbeats.

2. NEAREST CONE ATOM

The basic problem that appears in representation is the follow-
ing. Given a vector r̃ ∈ Rm, typically a residual, normalized
such that ∥r̃∥ = 1, we want to find the nearest atom from a
given cone C(d, ρ), i.e., the solution of

min
a∈C(d,ρ)

∥a− r̃∥2
s.t. ∥a∥ = 1

(2)

This is a simple geometric problem, illustrated in Fig. 2.
If r̃ ∈ C(d, ρ), then the trivial solution is a = r̃. Otherwise,
it is clear that a lies in the subspace generated by d and r̃ and
is on the frontier of the cone, hence ∥a − d∥ = ρ. Let q be
the vector orthogonal on d in this subspace, with ∥q∥ = 1.
We denote p = dT r̃ and remark that we can consider p > 0
(we can replace r̃ by −r̃). We can write q = αd + βr̃.
Orthogonality implies 0 = dTq = α+ βp. Using

α = −βp (3)

in 1 = ∥q∥2 = α2 + β2 + 2αβp = β2p2 + β2 − 2β2p2, we
get

β = 1/
√
1− p2. (4)

We now have an orthogonal base for the 2-dimensional sub-
space where a lies and we write

a = λd+ µq. (5)
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Fig. 2: Nearest atom a in cone centered in d with radius ρ,
with respect to a vector r̃. The vector q is orthogonal on d.
All vectors have length 1.

Algorithm 1: Nearest atom: compute nearest atom
in a cone from a given vector.

Data: vector d ∈ Rm and ρ > 0 defining C(d, ρ)
vector r ∈ Rm

Result: atom a ∈ C(d, ρ) nearest from r

1 Normalize vector: r̃ = r/∥r∥
2 Compute projection p = dT r̃
3 if p < 0 then
4 Change orientation: r̃ ← −r̃
5 if |p| ≥ 1− ρ2/2 then
6 The vector is in the cone: a = r̃

7 else
8 Set β = 1/

√
1− p2, α = −β|p|

9 Set λ = 1− ρ2/2, µ =
√
1− λ2

10 The desired atom is a = (λ+ µα)d+ µβr̃

To find the coefficients of the linear combination we see that
∥a∥ = 1 gives λ2 + µ2 = 1 and ∥a− d∥ = ρ gives

dTa = 1− ρ2/2. (6)

Multiplying (5) with dT we get

λ = dTa = 1− ρ2/2 (7)

and take (µ is positive by construction)

µ =
√

1− λ2. (8)

Putting together all the relations above gives Algorithm 1.
The vector r can be arbitrary. The condition that r̃ ∈ C(d, ρ),
used in step 5, results immediately from ∥d − r̃∥ ≤ ρ, since
the vectors have norm equal to 1; compare with (6).

3. OMP WITH CONE ATOMS

We proceed now to adapt OMP for solving (1). OMP has two
important operations: the choice of the next atom in the sup-



port and the least squares calculation of the current solution.
We examine their form for a dictionary with cone atoms.

Denoting A the matrix whose columns are the atoms se-
lected before the current OMP step and x the associated rep-
resentation vector, the current residual is r = y −Ax. The
next atom to enter the support is that with the largest projec-
tion on the residual (i.e. the nearest from the residual; see
expression in the last line of Algorithm 1). To compute the
best projection, we also use (3), (4), (8) and obtain

r̃Ta = (λ+ αµ)p+ βµ
= λp+ βµ(1− p2)

= λp+
√
(1− λ2)(1− p2)

(9)

We note that for computing this expression we do not need to
compute the optimal atom a, but only the standard OMP pro-
jection p = r̃Td (remind the sign convention making p > 0).
Since λ is an atom-dependent constant that can be computed
only once for a dictionary, it results that computing (9) for all
atoms costs only slightly more than computing the projections
in the OMP algorithm.

Once the support is increased with the atom with the best
projection, OMP proceeds by computing the least squares so-
lution for that support. This minimizes the error in the stan-
dard OMP setup. However, with cone atoms, this is no longer
true. The atoms already selected by projection may be not
optimal and they are usually not the solution of the current
version of (1); see again Figure 1.

Since each cone is a convex set, the linear combination of
atoms that optimally approximates y can be found by succes-
sive projections on the cones C(dj , ρj) that have been selected
as support. Each projection is made using Algorithm 1. One
can iterate the projections until there is no significant progress
in the approximation error or for a predefined number of iter-
ations. The natural initialization is the least squares approx-
imation of y with the currently selected atoms. So, in each
iteration, we compute a least squares solution, like in OMP,
and perform several rounds of projections, whose additional
complexity is relatively small, since only vectorial operations
of O(m) complexity are used in each run of Algorithm 1. The
overall complexity is only a few times that of OMP.

The above operations are gathered in Algorithm 2, Cone-
OMP. Steps 5-11 are the selection of the next cone atom and
the computation of the atom that is nearest from the current
residual. Step 7 implements (9) for next cone atom selection;
elementwise multiplication is denoted by ⊙. The matrix A
contains the actual atoms from the selected cones. The for
loop 14 implements a single round of projections, although
several could be used by simply repeating the loop.

In this form of the algorithm, the representation vector x
has finally s elements, corresponding to the s columns of the
actually used dictionary A. The cones to which the atoms
belong are given by S. We have ignored the case where the
residual is inside a cone and hence the representation is exact;
in this case, the algorithm must be stopped immediately.

Algorithm 2: Cone-OMP: Optimal Matching Pur-
suit with cone atoms using successive projections.

Data: dictionary D ∈ Rm×n and radii ρ ∈ Rn

(D and ρ define cones Cj(dj , ρj), j = 1 : n)
vector y ∈ Rm

sparsity level s
Result: representation x ∈ Rs, solution of (1)

support S ⊂ 1 : n of the sparse representation
actually used dictionary A ∈ Rm×s

1 Initialize r = y, S = ∅, A = []
2 for j = 1 to n do
3 λj = 1− ρ2j/2

4 for k = 1 to s do
5 Normalized residual: r̃ = r/∥r∥
6 Compute projections: p = DTr
7 Decide next index: j =

argmax
(
λ⊙ |p|+

√
(1− λ⊙ λ)⊙ (1− p⊙ p)

)
8 Next atom: a = Nearest atom(dj , ρj , r̃)
9 Increase support: S ← S ∪ {j}

10 Update actual dictionary: A← [A a]
11 Compute x by solving minx ∥y −Ax∥
12 Compute residual: r = y −Ax
13 if k > 1 then
14 for i = 1 to k do
15 Index in full dictionary j = S(i)
16 Remove current atom from residual:

r ← r + xiai

17 Update atom:
ai = Nearest atom(dj , ρj , r)

18 Update coefficient: xi = rTai

19 Update residual: r ← r − xiai

4. APPLICATION TO ANOMALY DETECTION

We apply Cone-OMP for detecting anomalies in MIT-BIH ar-
rythmia database [15]. We analyze record #109, like in [16],
using similar preprocessing. It is sampled at 360 Hz and cov-
ers about 30 minutes. It contains 2530 heartbeats, the anoma-
lies being 38 premature ventricular contractions (PVC) and 2
fusion of ventricular and normal beats. We extract all win-
dows of length 256 and we reduce the dimension of the sig-
nals to 32 via PCA. We divide the windows into 6 segments of
about 5 minutes (108000 signals) each. We train a dictionary
for each segment using 40 iterations of K-SVD [17], initial-
ized with n atoms that are random linear combinations of the
signals. Finally, for each window, we store the approximation
errors for OMP and Cone-OMP.

For each heartbeat, we use the representation errors on
201 windows: the one centered on the R point, 100 to the
left and 100 to the right. The median error is chosen as rep-



n s ρ ROC AUC FP FP FP
TP=40 TP=39 TP=38

96 3 - 0.99971 10.3 6.4 4.2
96 4 - 0.99971 11.7 6 3.6
128 4 - 0.99968 10.2 6.7 4.9
64 3 0.08 0.99984 6.7 4.7 2.4
96 3 0.05 0.99980 6.3 4 2.8
64 4 0.07 0.99986 5.7 2.8 1.8
96 4 0.05 0.99989 6.7 3 0.9
128 4 0.05 0.99977 8.3 3.7 2.8

Table 1: Best results for OMP (upper part) and Cone-OMP
(lower part).

n=
64

 
 

n=
96

n=
12

8
n=

64
n=

96

n=
12

8
n=

64
n=

96

n=
12

8
n=

64
n=

96

n=
12

8

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

R
ad

iu
s

s=2 s=3 s=4 s=5

Fig. 3: Comparison between the ROC AUC results of Cone-
OMP and OMP. White circles: OMP is better. Blue: Cone-
OMP is better. Red: Cone-OMP is better in each of the 10
trials. Square: Cone-OMP is better than the best overall OMP
result. An × symbol: best radius for the current n and s.

resentative error for that beat. The beats with the largest er-
rors are considered abnormal. We partially borrowed the im-
plementation from [18]; our code, written in MATLAB and
not yet optimized, can be found at http://asydil.upb.
ro/software.

We run our tests for n ∈ {64, 96, 128}, s ∈ {2, 3, 4, 5}.
We take all the radii to be equal, and test with ρ ∈ {0.01,
0.02, . . . , 0.1}. For each triplet (n, s, ρ), we generate 10 ran-
dom dictionaries for each segment and, for each window, we
compute 10 errors, as described above, then compute the av-
erage representative error for each beat. We also compute the
average ROC AUC and the average number of false positives
when the true positive rate is 100%, 97.5%, and 95%, corre-
sponding to finding all 40 anomalies, 39, and 38, respectively.

A sample of the best values is given in Table 1. More
illustrative on the detection power of Cone-OMP is the map
shown in Figure 3, where ROC AUC values are compared.
Colors show the radii for which Cone-OMP is better in aver-
age (blue) or, not only in average, but better for each of the
10 dictionaries (red). For many (n, s) pairs, there are several

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s
c
o

re

0 500 1000 1500 2000 2500

#heartbeat

Fig. 4: Representative error for each heartbeat, com-
puted with KSVD+OMP; black=normal, cyan=anomaly,
red=smallest error of an anomaly.
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Fig. 5: Same as in Fig.4, for KSVD+Cone-OMP.

radii for which Cone-OMP gives a ROC AUC higher than the
best overall OMP result (0.99971, see first line of Table 1).
Cone-OMP tends to give better results for smaller values of
the dictionary size. The behavior is robust with respect to the
radius: there is a range of radii for which Cone-OMP is better.
The results are clearly better than in [16].

To give some insight, Figures 4 and 5 show the repre-
sentative error (normalized such that the highest value is 1)
for OMP and Cone-OMP, respectively, for a single dictionary
(n = 96, s = 4, ρ = 0.04). We see that Cone-OMP is able
to represent very well the normal beats, the error being much
closer to zero than for OMP. However, the abnormal beats still
have large errors, showing that Cone-OMP has good potential
for solving anomaly detection problems.

5. CONCLUSIONS AND FUTURE WORK

We have presented an OMP algorithm for sparse representa-
tions with cone atoms and its application to anomaly detec-
tion. Further work naturally extends to dictionary learning;
we are currently testing several algorithms with promising re-
sults. A major challenge is the automated choice of the radii.

http://asydil.upb.ro/software
http://asydil.upb.ro/software


6. REFERENCES

[1] Z. Zhang, Y. Xu, J. Yang, X. Li, and D. Zhang, “A
Survey of Sparse Representation: Algorithms and Ap-
plications,” IEEE Access, vol. 3, pp. 490–530, 2015.

[2] Y.C. Pati, R. Rezaiifar, and P.S. Krishnaprasad, “Or-
thogonal Matching Pursuit: Recursive Function Ap-
proximation with Applications to Wavelet Decomposi-
tion,” in 27th Asilomar Conf. Signals Systems Comput-
ers, Nov. 1993, vol. 1, pp. 40–44.

[3] G. Pope, C. Aubel, and C. Studer, “Learning phase-
invariant dictionaries,” in Int. Conf. Acoustics Speech
Signal Proc (ICASSP), Vancouver, Canada, May 2013,
pp. 5979–5983.

[4] C. Rusu, B. Dumitrescu, and S.A. Tsaftaris, “Explicit
shift-invariant dictionary learning,” IEEE Signal Proc.
Letters, vol. 24, no. 1, pp. 6–9, Jan. 2014.

[5] C. Garcia-Cardona and B. Wohlberg, “Convolutional
dictionary learning: A comparative review and new al-
gorithms,” IEEE Transactions on Computational Imag-
ing, vol. 4, no. 3, pp. 366–381, 2018.

[6] L. Le Magoarou and R. Gribonval, “Chasing Butterflies:
in Search of Efficient Dictionaries,” in Int. Conf. Acous-
tics Speech Signal Proc (ICASSP), Brisbane, Australia,
Apr. 2015, pp. 3287–3291.

[7] J. Song, X. Xie, G. Shi, and W. Dong, “Multi-layer dis-
criminative dictionary learning with locality constraint
for image classification,” Pattern Recognition, vol. 91,
pp. 135–146, 2019.

[8] J. Mairal, M. Elad, and G. Sapiro, “Sparse represen-
tation for color image restoration,” IEEE Trans. Image
Proc., vol. 17, no. 1, pp. 53–69, 2008.

[9] S. Hawe, M. Seibert, and M. Kleinsteuber, “Separable
dictionary learning,” in Proc. IEEE Conference on Com-
puter Vision and Pattern Recognition, 2013, pp. 438–
445.

[10] V.H. Nguyen, V.M. Patel, N.M. Nasrabadi, and R. Chel-
lappa, “Design of Non-Linear Kernel Dictionaries for
Object Recognition,” IEEE Trans. Image Proc., vol. 22,
no. 12, pp. 5123–5135, Dec. 2013.

[11] A. Golts and M. Elad, “Linearized Kernel Dictionary
Learning,” IEEE J. Sel. Topics Signal Proc., vol. 10, no.
4, pp. 726–739, June 2016.

[12] V. Papyan, Y. Romano, and M. Elad, “Convolutional
neural networks analyzed via convolutional sparse cod-
ing,” The Journal of Machine Learning Research, vol.
18, no. 1, pp. 2887–2938, 2017.

[13] J. Hu and Y.-P. Tan, “Nonlinear dictionary learning with
application to image classification,” Pattern Recogni-
tion, vol. 75, pp. 282–291, 2018.

[14] S. Mahdizadehaghdam, A. Panahi, H. Krim, and L. Dai,
“Deep dictionary learning: A parametric network ap-
proach,” IEEE Trans. Image Proc., vol. 28, no. 10, pp.
4790–4802, 2019.

[15] G.B. Moody and R.G. Mark, “The impact of the
MIT-BIH arrhythmia database,” IEEE Engineering in
Medicine and Biology Magazine, vol. 20, no. 3, pp. 45–
50, 2001.

[16] A. Adler, M. Elad, Y. Hel-Or, and E. Rivlin, “Sparse
coding with anomaly detection,” Journal of Signal Pro-
cessing Systems, vol. 79, no. 2, pp. 179–188, 2015.

[17] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An
Algorithm for Designing Overcomplete Dictionaries for
Sparse Representation,” IEEE Trans. Signal Proc., vol.
54, no. 11, pp. 4311–4322, Nov. 2006.

[18] N. Cleju and I.B. Ciocoiu, “Preconditioned K-SVD
for ECG anomaly detection,” in International Sympo-
sium on Electronics and Telecommunications (ISETC),
Timisoara, Romania, 2020, pp. 1–4.


	 Introduction
	 Nearest cone atom
	 OMP with cone atoms
	 Application to anomaly detection
	 Conclusions and future work
	 References

